BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24483502)

  • 1. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria.
    Song DH; Park J; Maurer LL; Lu W; Philbert MA; Sastry AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062723. PubMed ID: 24483502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of local pH on the formation and regulation of cristae morphologies.
    Song DH; Park J; Philbert MA; Sastry AM; Lu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022702. PubMed ID: 25215753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible and irreversible mitochondrial swelling in vitro.
    Khmelinskii I; Makarov V
    Biophys Chem; 2021 Nov; 278():106668. PubMed ID: 34418677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does density of the inner mitochondrial membrane influence mitochondrial performance?
    Heine KB; Parry HA; Hood WR
    Am J Physiol Regul Integr Comp Physiol; 2023 Feb; 324(2):R242-R248. PubMed ID: 36572555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonic Capacitor: Elucidating the biological significance of mitochondrial cristae formation.
    Lee JW
    Sci Rep; 2020 Jun; 10(1):10304. PubMed ID: 32601276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent.
    Wolf DM; Segawa M; Kondadi AK; Anand R; Bailey ST; Reichert AS; van der Bliek AM; Shackelford DB; Liesa M; Shirihai OS
    EMBO J; 2019 Nov; 38(22):e101056. PubMed ID: 31609012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling.
    Plecitá-Hlavatá L; Ježek P
    Int J Biochem Cell Biol; 2016 Nov; 80():31-50. PubMed ID: 27640755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico simulation of reversible and irreversible swelling of mitochondria: The role of membrane rigidity.
    Makarov VI; Khmelinskii I; Khuchua Z; Javadov S
    Mitochondrion; 2020 Jan; 50():71-81. PubMed ID: 31669621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial contact site and cristae organizing system.
    van der Laan M; Horvath SE; Pfanner N
    Curr Opin Cell Biol; 2016 Aug; 41():33-42. PubMed ID: 27062547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications.
    Perkins GA; Ellisman MH; Fox DA
    Mol Vis; 2003 Mar; 9():60-73. PubMed ID: 12632036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation and physiology of mitochondrial proton leak.
    Divakaruni AS; Brand MD
    Physiology (Bethesda); 2011 Jun; 26(3):192-205. PubMed ID: 21670165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics.
    Rampelt H; Zerbes RM; van der Laan M; Pfanner N
    Biochim Biophys Acta Mol Cell Res; 2017 Apr; 1864(4):737-746. PubMed ID: 27614134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains.
    Zerbes RM; Bohnert M; Stroud DA; von der Malsburg K; Kram A; Oeljeklaus S; Warscheid B; Becker T; Wiedemann N; Veenhuis M; van der Klei IJ; Pfanner N; van der Laan M
    J Mol Biol; 2012 Sep; 422(2):183-91. PubMed ID: 22575891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome.
    Venkatraman K; Lee CT; Garcia GC; Mahapatra A; Milshteyn D; Perkins G; Kim KY; Pasolli HA; Phan S; Lippincott-Schwartz J; Ellisman MH; Rangamani P; Budin I
    EMBO J; 2023 Dec; 42(24):e114054. PubMed ID: 37933600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cristae formation-linking ultrastructure and function of mitochondria.
    Zick M; Rabl R; Reichert AS
    Biochim Biophys Acta; 2009 Jan; 1793(1):5-19. PubMed ID: 18620004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of mitochondrial membrane potential gradients on signaling and ATP production analyzed by correlative multi-parameter microscopy.
    Gottschalk B; Koshenov Z; Malli R; Graier WF
    Sci Rep; 2024 Jun; 14(1):14784. PubMed ID: 38926476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping fuel utilization by mitochondria.
    Alan L; Scorrano L
    Curr Biol; 2022 Jun; 32(12):R618-R623. PubMed ID: 35728541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control of elastic properties of the inner mitochondrial membrane.
    Chvanov M
    J Phys Chem B; 2006 Nov; 110(45):22903-9. PubMed ID: 17092042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An open issue: the inner mitochondrial membrane (IMM) as a free boundary problem.
    Demongeot J; Glade N; Hansen O; Moreira A
    Biochimie; 2007 Sep; 89(9):1049-57. PubMed ID: 17560004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.