These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24483525)

  • 1. Integrable approximation of regular islands: the iterative canonical transformation method.
    Löbner C; Löck S; Bäcker A; Ketzmerick R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062901. PubMed ID: 24483525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrable approximation of regular regions with a nonlinear resonance chain.
    Kullig J; Löbner C; Mertig N; Bäcker A; Ketzmerick R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052906. PubMed ID: 25493857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct regular-to-chaotic tunneling rates using the fictitious-integrable-system approach.
    Bäcker A; Ketzmerick R; Löck S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056208. PubMed ID: 21230564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaking billiards.
    Nagler J; Krieger M; Linke M; Schönke J; Wiersig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation-free prediction of resonance-assisted tunneling in mixed regular-chaotic systems.
    Mertig N; Kullig J; Löbner C; Bäcker A; Ketzmerick R
    Phys Rev E; 2016 Dec; 94(6-1):062220. PubMed ID: 28085465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regular-to-chaotic tunneling rates using a fictitious integrable system.
    Bäcker A; Ketzmerick R; Löck S; Schilling L
    Phys Rev Lett; 2008 Mar; 100(10):104101. PubMed ID: 18352192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-particle and few-particle billiards.
    Lansel S; Porter MA; Bunimovich LA
    Chaos; 2006 Mar; 16(1):013129. PubMed ID: 16599760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistics of Poincaré recurrences for maps with integrable and ergodic components.
    Hu H; Rampioni A; Rossi L; Turchetti G; Vaienti S
    Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic and Arnold stripes in weakly chaotic Hamiltonian systems.
    Custódio MS; Manchein C; Beims MW
    Chaos; 2012 Jun; 22(2):026112. PubMed ID: 22757571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrability and action operators in quantum Hamiltonian systems.
    Stepanov VV; Müller G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056202. PubMed ID: 11414985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring classical phase space structures of nearly integrable and mixed quantum systems via parametric variation.
    Cerruti NR; Keshavamurthy S; Tomsovic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056205. PubMed ID: 14682869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiclassical accuracy in phase space for regular and chaotic dynamics.
    Kaplan L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026223. PubMed ID: 15447581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal flooding of regular islands by chaotic wave packets.
    Bittrich L; Bäcker A; Ketzmerick R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032922. PubMed ID: 24730928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple returns for some regular and mixing maps.
    Haydn N; Lunedei E; Rossi L; Turchetti G; Vaienti S
    Chaos; 2005 Sep; 15(3):33109. PubMed ID: 16252983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaos in an exact relativistic three-body self-gravitating system.
    Burnell F; Malecki JJ; Mann RB; Ohta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016214. PubMed ID: 14995700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mushrooms and other billiards with divided phase space.
    Bunimovich LA
    Chaos; 2001 Dec; 11(4):802-808. PubMed ID: 12779519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical tunneling in mushroom billiards.
    Bäcker A; Ketzmerick R; Löck S; Robnik M; Vidmar G; Höhmann R; Kuhl U; Stöckmann HJ
    Phys Rev Lett; 2008 May; 100(17):174103. PubMed ID: 18518292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial-differential-equation-based approach to classical phase-space deformations.
    Tannenbaum E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066613. PubMed ID: 12188857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.