These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 24483539)
1. Clustering in delay-coupled smooth and relaxational chemical oscillators. Blaha K; Lehnert J; Keane A; Dahms T; Hövel P; Schöll E; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062915. PubMed ID: 24483539 [TBL] [Abstract][Full Text] [Related]
2. Transitional cluster dynamics in a model for delay-coupled chemical oscillators. Keane A; Neff A; Blaha K; Amann A; Hövel P Chaos; 2023 Jun; 33(6):. PubMed ID: 37307156 [TBL] [Abstract][Full Text] [Related]
3. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850 [TBL] [Abstract][Full Text] [Related]
4. Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling. Choe CU; Flunkert V; Hövel P; Benner H; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046206. PubMed ID: 17500977 [TBL] [Abstract][Full Text] [Related]
5. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks. Wang Z; Campbell SA Chaos; 2017 Nov; 27(11):114316. PubMed ID: 29195320 [TBL] [Abstract][Full Text] [Related]
6. Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system. Song Y; Xu J IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1659-70. PubMed ID: 24808010 [TBL] [Abstract][Full Text] [Related]
7. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Choe CU; Dahms T; Hövel P; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621 [TBL] [Abstract][Full Text] [Related]
8. Synchronization of electrochemical oscillators with differential coupling. Wickramasinghe M; Kiss IZ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535 [TBL] [Abstract][Full Text] [Related]
9. Controlling cluster synchronization by adapting the topology. Lehnert J; Hövel P; Selivanov A; Fradkov A; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042914. PubMed ID: 25375574 [TBL] [Abstract][Full Text] [Related]
10. Amplitude death through a Hopf bifurcation in coupled electrochemical oscillators: experiments and simulations. Zhai Y; Kiss IZ; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026208. PubMed ID: 14995549 [TBL] [Abstract][Full Text] [Related]
11. Measuring the universal synchronization properties of driven oscillators across a Hopf instability. Romanelli M; Wang L; Brunel M; Vallet M Opt Express; 2014 Apr; 22(7):7364-73. PubMed ID: 24718112 [TBL] [Abstract][Full Text] [Related]
12. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators. Dodla R; Sen A; Johnston GL Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056217. PubMed ID: 15244914 [TBL] [Abstract][Full Text] [Related]
13. Time-delay effects on the aging transition in a population of coupled oscillators. Thakur B; Sharma D; Sen A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042904. PubMed ID: 25375564 [TBL] [Abstract][Full Text] [Related]
14. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of a semiconductor laser array with delayed global coupling. Kozyreff G; Vladimirov AG; Mandel P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016613. PubMed ID: 11461434 [TBL] [Abstract][Full Text] [Related]
16. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637 [TBL] [Abstract][Full Text] [Related]
17. Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems. Postlethwaite CM; Brown G; Silber M Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120467. PubMed ID: 23960225 [TBL] [Abstract][Full Text] [Related]
18. Amplitude and phase effects on the synchronization of delay-coupled oscillators. D'Huys O; Vicente R; Danckaert J; Fischer I Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097 [TBL] [Abstract][Full Text] [Related]
19. Stability switches and multistability coexistence in a delay-coupled neural oscillators system. Song Z; Xu J J Theor Biol; 2012 Nov; 313():98-114. PubMed ID: 22921877 [TBL] [Abstract][Full Text] [Related]
20. Two-cluster solutions in an ensemble of generic limit-cycle oscillators with periodic self-forcing via the mean-field. Schmidt L; Krischer K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042911. PubMed ID: 25375571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]