These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24483558)

  • 1. Multiple collisions in turbulent flows.
    Vosskuhle M; Lévêque E; Wilkinson M; Pumir A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063008. PubMed ID: 24483558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical model for collisions and recollisions of inertial particles in mixing flows.
    Gustavsson K; Mehlig B
    Eur Phys J E Soft Matter; 2016 May; 39(5):55. PubMed ID: 27225619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial particle collisions in turbulent synthetic flows: quantifying the sling effect.
    Ducasse L; Pumir A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066312. PubMed ID: 20365272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision rate coefficient for charged dust grains in the presence of linear shear.
    Yang H; Hogan CJ
    Phys Rev E; 2017 Sep; 96(3-1):032911. PubMed ID: 29347041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferred location of droplet collisions in turbulent flows.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033005. PubMed ID: 24730935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative velocity distribution of inertial particles in turbulence: A numerical study.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043022. PubMed ID: 26565347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gravity-driven enhancement of heavy particle clustering in turbulent flow.
    Bec J; Homann H; Ray SS
    Phys Rev Lett; 2014 May; 112(18):184501. PubMed ID: 24856699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumbling of small axisymmetric particles in random and turbulent flows.
    Gustavsson K; Einarsson J; Mehlig B
    Phys Rev Lett; 2014 Jan; 112(1):014501. PubMed ID: 24483903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collision model for fully resolved simulations of flows laden with finite-size particles.
    Costa P; Boersma BJ; Westerweel J; Breugem WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053012. PubMed ID: 26651784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of single rising bubbles in neutrally buoyant liquid-solid suspensions.
    Hooshyar N; van Ommen JR; Hamersma PJ; Sundaresan S; Mudde RF
    Phys Rev Lett; 2013 Jun; 110(24):244501. PubMed ID: 25165930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced droplet collision rates and impact velocities in turbulent flows: The effect of poly-dispersity and transient phases.
    James M; Ray SS
    Sci Rep; 2017 Sep; 7(1):12231. PubMed ID: 28947811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ideal rate of collision of cylinders in simple shear flow.
    Singh V; Koch DL; Stroock AD
    Langmuir; 2011 Oct; 27(19):11813-23. PubMed ID: 21846083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal length and time scales in a simple shear granular flow.
    Shen HH; Sankaran B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051308. PubMed ID: 15600604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collision limited reaction rates for arbitrarily shaped particles across the entire diffusive Knudsen number range.
    Gopalakrishnan R; Thajudeen T; Hogan CJ
    J Chem Phys; 2011 Aug; 135(5):054302. PubMed ID: 21823695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of the relative velocity of particles in turbulent flows: Monodisperse particles.
    Bhatnagar A; Gustavsson K; Mitra D
    Phys Rev E; 2018 Feb; 97(2-1):023105. PubMed ID: 29548076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coulomb-influenced collisions in aerosols and dusty plasmas.
    Gopalakrishnan R; Hogan CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026410. PubMed ID: 22463340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame.
    Benzi R; Biferale L; Calzavarini E; Lohse D; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066318. PubMed ID: 20365278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental studies of occupation times in turbulent flows.
    Mann J; Ott S; Pécseli HL; Trulsen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056307. PubMed ID: 12786272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding droplet collisions through a model flow: Insights from a Burgers vortex.
    Agasthya L; Picardo JR; Ravichandran S; Govindarajan R; Ray SS
    Phys Rev E; 2019 Jun; 99(6-1):063107. PubMed ID: 31330678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable-range projection model for turbulence-driven collisions.
    Gustavsson K; Mehlig B; Wilkinson M; Uski V
    Phys Rev Lett; 2008 Oct; 101(17):174503. PubMed ID: 18999752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.