These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24483561)

  • 1. Solid-particle jet formation under shock-wave acceleration.
    Rodriguez V; Saurel R; Jourdan G; Houas L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063011. PubMed ID: 24483561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External front instabilities induced by a shocked particle ring.
    Rodriguez V; Saurel R; Jourdan G; Houas L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043013. PubMed ID: 25375599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanism of shock-induced particle jetting.
    Xue K; Sun L; Bai C
    Phys Rev E; 2016 Aug; 94(2-1):022903. PubMed ID: 27627376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking gas and particle ejection dynamics to boundary conditions in scaled shock-tube experiments.
    Cigala V; Kueppers U; Fernández JJP; Dingwell DB
    Bull Volcanol; 2021; 83(8):53. PubMed ID: 34720320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jet flow in steadily swimming adult squid.
    Anderson EJ; Grosenbaugh MA
    J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant ion acceleration by plasma jets: Effects of jet breaking and the magnetic-field curvature.
    Artemyev AV; Vasiliev AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053104. PubMed ID: 26066269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vortex formation in a shock-accelerated gas induced by particle seeding.
    Vorobieff P; Anderson M; Conroy J; White R; Truman CR; Kumar S
    Phys Rev Lett; 2011 May; 106(18):184503. PubMed ID: 21635092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertially driven buckling and overturning of jets in a Hele-Shaw cell.
    Pesci AI; Porter MA; Goldstein RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056305. PubMed ID: 14682882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Nonthermal Particle Acceleration by the Kink Instability in Relativistic Jets.
    Alves EP; Zrake J; Fiuza F
    Phys Rev Lett; 2018 Dec; 121(24):245101. PubMed ID: 30608740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual fragmentation modes of the explosively dispersed granular materials.
    Xue K; Yu Q; Bai C
    Eur Phys J E Soft Matter; 2014 Sep; 37(9):42. PubMed ID: 25260327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New design of a multi-jet target for quasi phase matching.
    Hage A; Landgraf B; Taylor M; Wünsche M; Gangolf T; Höppner H; Prandolini MJ; Riedel R; Schulz M; Tavella F; Willner A; Yeung M; Paulus GG; Spielmann C; Dromey B; Zepf M
    Rev Sci Instrum; 2014 Oct; 85(10):103105. PubMed ID: 25362369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of micro-shock wave assisted dry particle and fluid jet delivery system.
    Rakesh SG; Gnanadhas DP; Allam US; Nataraja KN; Barhai PK; Jagadeesh G; Chakravortty D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):647-62. PubMed ID: 22763845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the Hall effect on high-energy-density plasma jets.
    Gourdain PA; Seyler CE
    Phys Rev Lett; 2013 Jan; 110(1):015002. PubMed ID: 23383800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly underexpanded jets in the presence of a density jump between an ambient gas and a jet.
    Belan M; De Ponte S; Tordella D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026303. PubMed ID: 20866901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern formation during air injection into granular materials confined in a circular Hele-Shaw cell.
    Johnsen O; Toussaint R; Måløy KJ; Flekkøy EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011301. PubMed ID: 16907083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamics of a non-equilibrium bubble near bio-materials.
    Ohl SW; Klaseboer E; Khoo BC
    Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing at the external boundary of a submerged turbulent jet.
    Eidelman A; Elperin T; Kleeorin N; Hazak G; Rogachevskii I; Sadot O; Sapir-Katiraie I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026311. PubMed ID: 19391844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Visualization and characterization of the transvalvular jet in mitral stenosis using color-coded Doppler].
    Moro E; Nicolosi GL; Pignoni P; Pavan D; Dall'Aglio V; D'Angelo G; Lestuzzi C; Zanuttini D
    G Ital Cardiol; 1987 Oct; 17(10):815-22. PubMed ID: 3436493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Birth and growth of a granular jet.
    Royer JR; Corwin EI; Conyers B; Flior A; Rivers ML; Eng PJ; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011305. PubMed ID: 18763946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries.
    Rigas F; Sklavounos S
    J Hazard Mater; 2005 May; 121(1-3):23-30. PubMed ID: 15885402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.