These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 24483640)
1. Forecasting neutron star temperatures: predictability and variability. Page D; Reddy S Phys Rev Lett; 2013 Dec; 111(24):241102. PubMed ID: 24483640 [TBL] [Abstract][Full Text] [Related]
2. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29. Brown EF; Cumming A; Fattoyev FJ; Horowitz CJ; Page D; Reddy S Phys Rev Lett; 2018 May; 120(18):182701. PubMed ID: 29775364 [TBL] [Abstract][Full Text] [Related]
3. Thermal conductivity and phase separation of the crust of accreting neutron stars. Horowitz CJ; Caballero OL; Berry DK Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026103. PubMed ID: 19391802 [TBL] [Abstract][Full Text] [Related]
4. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts. Schatz H; Gupta S; Möller P; Beard M; Brown EF; Deibel AT; Gasques LR; Hix WR; Keek L; Lau R; Steiner AW; Wiescher M Nature; 2014 Jan; 505(7481):62-5. PubMed ID: 24291788 [TBL] [Abstract][Full Text] [Related]
5. Constraints on neutron star crusts from oscillations in giant flares. Steiner AW; Watts AL Phys Rev Lett; 2009 Oct; 103(18):181101. PubMed ID: 19905795 [TBL] [Abstract][Full Text] [Related]
6. From hadrons to quarks in neutron stars: a review. Baym G; Hatsuda T; Kojo T; Powell PD; Song Y; Takatsuka T Rep Prog Phys; 2018 May; 81(5):056902. PubMed ID: 29424363 [TBL] [Abstract][Full Text] [Related]
7. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars. Horowitz CJ; Berry DK; Briggs CM; Caplan ME; Cumming A; Schneider AS Phys Rev Lett; 2015 Jan; 114(3):031102. PubMed ID: 25658989 [TBL] [Abstract][Full Text] [Related]
8. Neutron Star Tidal Deformabilities Constrained by Nuclear Theory and Experiment. Lim Y; Holt JW Phys Rev Lett; 2018 Aug; 121(6):062701. PubMed ID: 30141641 [TBL] [Abstract][Full Text] [Related]
9. Superfluid heat conduction and the cooling of magnetized neutron stars. Aguilera DN; Cirigliano V; Pons JA; Reddy S; Sharma R Phys Rev Lett; 2009 Mar; 102(9):091101. PubMed ID: 19392503 [TBL] [Abstract][Full Text] [Related]
10. Instability windows and evolution of rapidly rotating neutron stars. Gusakov ME; Chugunov AI; Kantor EM Phys Rev Lett; 2014 Apr; 112(15):151101. PubMed ID: 24785021 [TBL] [Abstract][Full Text] [Related]
11. Plumbing neutron stars to new depths with the binding energy of the exotic nuclide 82Zn. Wolf RN; Beck D; Blaum K; Böhm Ch; Borgmann Ch; Breitenfeldt M; Chamel N; Goriely S; Herfurth F; Kowalska M; Kreim S; Lunney D; Manea V; Minaya Ramirez E; Naimi S; Neidherr D; Rosenbusch M; Schweikhard L; Stanja J; Wienholtz F; Zuber K Phys Rev Lett; 2013 Jan; 110(4):041101. PubMed ID: 25166148 [TBL] [Abstract][Full Text] [Related]
12. The physics of neutron stars. Lattimer JM; Prakash M Science; 2004 Apr; 304(5670):536-42. PubMed ID: 15105490 [TBL] [Abstract][Full Text] [Related]
13. Mass Measurement of 56Sc Reveals a Small A = 56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust. Meisel Z; George S; Ahn S; Bazin D; Brown BA; Browne J; Carpino JF; Chung H; Cole AL; Cyburt RH; Estradé A; Famiano M; Gade A; Langer C; Matoš M; Mittig W; Montes F; Morrissey DJ; Pereira J; Schatz H; Schatz J; Scott M; Shapira D; Smith K; Stevens J; Tan W; Tarasov O; Towers S; Wimmer K; Winkelbauer JR; Yurkon J; Zegers RG Phys Rev Lett; 2015 Oct; 115(16):162501. PubMed ID: 26550869 [TBL] [Abstract][Full Text] [Related]
14. Breaking strain of neutron star crust and gravitational waves. Horowitz CJ; Kadau K Phys Rev Lett; 2009 May; 102(19):191102. PubMed ID: 19518937 [TBL] [Abstract][Full Text] [Related]
15. Durability of the accretion disk of millisecond pulsars. Michel FC; Dessler AJ Science; 1985 May; 228(4702):1015-6. PubMed ID: 17797665 [TBL] [Abstract][Full Text] [Related]
16. Time-of-flight mass measurements for nuclear processes in neutron star crusts. Estradé A; Matoš M; Schatz H; Amthor AM; Bazin D; Beard M; Becerril A; Brown EF; Cyburt R; Elliot T; Gade A; Galaviz D; George S; Gupta SS; Hix WR; Lau R; Lorusso G; Möller P; Pereira J; Portillo M; Rogers AM; Shapira D; Smith E; Stolz A; Wallace M; Wiescher M Phys Rev Lett; 2011 Oct; 107(17):172503. PubMed ID: 22107512 [TBL] [Abstract][Full Text] [Related]
17. Neutron Star Internal Heating Constraints on Mirror Matter. McKeen D; Pospelov M; Raj N Phys Rev Lett; 2021 Aug; 127(6):061805. PubMed ID: 34420351 [TBL] [Abstract][Full Text] [Related]
18. Gapless Neutron Superfluidity Can Explain the Late Time Cooling of Transiently Accreting Neutron Stars. Allard V; Chamel N Phys Rev Lett; 2024 May; 132(18):181001. PubMed ID: 38759181 [TBL] [Abstract][Full Text] [Related]
19. Three dimensional simulation of the magnetic stress in a neutron star crust. Wood TS; Hollerbach R Phys Rev Lett; 2015 May; 114(19):191101. PubMed ID: 26024158 [TBL] [Abstract][Full Text] [Related]
20. Surface emission from neutron stars and implications for the physics of their interiors. Ozel F Rep Prog Phys; 2013 Jan; 76(1):016901. PubMed ID: 23234858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]