These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24483640)

  • 21. Phase separation in the crust of accreting neutron stars.
    Horowitz CJ; Berry DK; Brown EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066101. PubMed ID: 17677319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cold neutrons trapped in external fields.
    Gandolfi S; Carlson J; Pieper SC
    Phys Rev Lett; 2011 Jan; 106(1):012501. PubMed ID: 21231734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neutron reactions in accreting neutron stars: a new pathway to efficient crust heating.
    Gupta SS; Kawano T; Möller P
    Phys Rev Lett; 2008 Dec; 101(23):231101. PubMed ID: 19113537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospects of detecting baryon and quark superfluidity from cooling neutron stars.
    Page D; Prakash M; Lattimer JM; Steiner AW
    Phys Rev Lett; 2000 Sep; 85(10):2048-51. PubMed ID: 10970460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constraining a possible time variation of the gravitational constant through "gravitochemical heating" of neutron stars.
    Jofré P; Reisenegger A; Fernández R
    Phys Rev Lett; 2006 Sep; 97(13):131102. PubMed ID: 17026021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.
    Ho WC; Heinke CO
    Nature; 2009 Nov; 462(7269):71-3. PubMed ID: 19890325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamically Consistent Equation of State for an Accreted Neutron Star Crust.
    Gusakov ME; Chugunov AI
    Phys Rev Lett; 2020 May; 124(19):191101. PubMed ID: 32469588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star.
    Cottam J; Paerels F; Mendez M
    Nature; 2002 Nov; 420(6911):51-4. PubMed ID: 12422210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Statistical Approach to Neutron Stars' Crust-Core Transition Density and Pressure.
    Bednarek I; Olchawa W; Sładkowski J; Syska J
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter.
    Page D; Prakash M; Lattimer JM; Steiner AW
    Phys Rev Lett; 2011 Feb; 106(8):081101. PubMed ID: 21405561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars.
    Chakrabarty D; Morgan EH; Muno MP; Galloway DK; Wijnands R; Van Der Klis M; Markwardt CB
    Nature; 2003 Jul; 424(6944):42-4. PubMed ID: 12840751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-isothermal conditions in the middle and lower crust induced by melt migration.
    Depine GV; Andronicos CL; Phipps-Morgan J
    Nature; 2008 Mar; 452(7183):80-3. PubMed ID: 18322532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for heating of neutron stars by magnetic-field decay.
    Pons JA; Link B; Miralles JA; Geppert U
    Phys Rev Lett; 2007 Feb; 98(7):071101. PubMed ID: 17359011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. β Decay of ^{61}V and its Role in Cooling Accreted Neutron Star Crusts.
    Ong WJ; Brown EF; Browne J; Ahn S; Childers K; Crider BP; Dombos AC; Gupta SS; Hitt GW; Langer C; Lewis R; Liddick SN; Lyons S; Meisel Z; Möller P; Montes F; Naqvi F; Pereira J; Prokop C; Richman D; Schatz H; Schmidt K; Spyrou A
    Phys Rev Lett; 2020 Dec; 125(26):262701. PubMed ID: 33449748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.
    Guntur SR; Lee KI; Paeng DG; Coleman AJ; Choi MJ
    Ultrasound Med Biol; 2013 Oct; 39(10):1771-84. PubMed ID: 23932271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.
    Watanabe G; Pethick CJ
    Phys Rev Lett; 2017 Aug; 119(6):062701. PubMed ID: 28949649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards a metallurgy of neutron star crusts.
    Kobyakov D; Pethick CJ
    Phys Rev Lett; 2014 Mar; 112(11):112504. PubMed ID: 24702357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutron Star Heating Constraints on Wave-Function Collapse Models.
    Tilloy A; Stace TM
    Phys Rev Lett; 2019 Aug; 123(8):080402. PubMed ID: 31491197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constraining Neutron Superfluidity with R-Mode Physics.
    Kantor EM; Gusakov ME; Dommes VA
    Phys Rev Lett; 2020 Oct; 125(15):151101. PubMed ID: 33095621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.