These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24483660)

  • 21. Quantum Monte Carlo method for the Bose-Hubbard model with harmonic confining potential.
    Kato Y; Kawashima N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021104. PubMed ID: 19391703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strongly interacting bosons in a disordered optical lattice.
    White M; Pasienski M; McKay D; Zhou SQ; Ceperley D; Demarco B
    Phys Rev Lett; 2009 Feb; 102(5):055301. PubMed ID: 19257516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.
    Łącki M; Damski B; Zakrzewski J
    Sci Rep; 2016 Dec; 6():38340. PubMed ID: 27910915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong coupling phases of the spin-orbit-coupled spin-1 Bose-Hubbard chain: odd integer Mott lobes and helical magnetic phases.
    Pixley JH; Cole WS; Spielman IB; Rizzi M; Sarma SD
    Phys Rev A (Coll Park); 2017 Oct; 96(4):. PubMed ID: 38495960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laser spectroscopic probing of coexisting superfluid and insulating states of an atomic Bose-Hubbard system.
    Kato S; Inaba K; Sugawa S; Shibata K; Yamamoto R; Yamashita M; Takahashi Y
    Nat Commun; 2016 Apr; 7():11341. PubMed ID: 27094083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2008 Mar; 100(12):120402. PubMed ID: 18517841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.
    Bakhtiari MR; Hemmerich A; Ritsch H; Thorwart M
    Phys Rev Lett; 2015 Mar; 114(12):123601. PubMed ID: 25860742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frustration-induced supersolid phases of extended Bose-Hubbard model in the hard-core limit.
    Tu WL; Wu HK; Suzuki T
    J Phys Condens Matter; 2020 Aug; 32(45):. PubMed ID: 32634790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bose-Einstein condensation of particle-hole pairs in ultracold fermionic atoms trapped within optical lattices.
    Lee C
    Phys Rev Lett; 2004 Sep; 93(12):120406. PubMed ID: 15447239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability and superfluidity of the Bose-Einstein condensate in a two-leg ladder with magnetic field.
    Jian Y; Qiao X; Liang JC; Yu ZF; Zhang AX; Xue JK
    Phys Rev E; 2021 Aug; 104(2-1):024212. PubMed ID: 34525534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarized superfluidity in the attractive hubbard model with population imbalance.
    Dao TL; Ferrero M; Georges A; Capone M; Parcollet O
    Phys Rev Lett; 2008 Dec; 101(23):236405. PubMed ID: 19113574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mott-insulator transition in a two-dimensional atomic Bose gas.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2007 Feb; 98(8):080404. PubMed ID: 17359074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quench in the 1D Bose-Hubbard model: topological defects and excitations from the Kosterlitz-Thouless phase transition dynamics.
    Dziarmaga J; Zurek WH
    Sci Rep; 2014 Aug; 4():5950. PubMed ID: 25091996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose-Hubbard model.
    Sciolla B; Biroli G
    Phys Rev Lett; 2010 Nov; 105(22):220401. PubMed ID: 21231367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entanglement spectrum of the two-dimensional Bose-Hubbard model.
    Alba V; Haque M; Läuchli AM
    Phys Rev Lett; 2013 Jun; 110(26):260403. PubMed ID: 23848849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interference of atomic levels and superfluid-Mott insulator phase transitions in a two-component Bose-Einstein condensate.
    Krutitsky KV; Graham R
    Phys Rev Lett; 2003 Dec; 91(24):240406. PubMed ID: 14683098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sweeping from the superfluid to the Mott phase in the Bose-Hubbard model.
    Schützhold R; Uhlmann M; Xu Y; Fischer UR
    Phys Rev Lett; 2006 Nov; 97(20):200601. PubMed ID: 17155669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of a Superradiant Mott Insulator in the Dicke-Hubbard Model.
    Klinder J; Keßler H; Bakhtiari MR; Thorwart M; Hemmerich A
    Phys Rev Lett; 2015 Dec; 115(23):230403. PubMed ID: 26684102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum phases of the extended Bose-Hubbard hamiltonian: possibility of a supersolid state of cold atoms in optical lattices.
    Scarola VW; Das Sarma S
    Phys Rev Lett; 2005 Jul; 95(3):033003. PubMed ID: 16090740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.