These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24483660)

  • 41. Phase diagram for a Bose-Einstein condensate moving in an optical lattice.
    Mun J; Medley P; Campbell GK; Marcassa LG; Pritchard DE; Ketterle W
    Phys Rev Lett; 2007 Oct; 99(15):150604. PubMed ID: 17995152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disordered one-dimensional bose-fermi mixtures: the Bose-Fermi glass.
    Crépin F; Zaránd G; Simon P
    Phys Rev Lett; 2010 Sep; 105(11):115301. PubMed ID: 20867581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coherent zero-state and pi-state in an exciton-polariton condensate array.
    Lai CW; Kim NY; Utsunomiya S; Roumpos G; Deng H; Fraser MD; Byrnes T; Recher P; Kumada N; Fujisawa T; Yamamoto Y
    Nature; 2007 Nov; 450(7169):529-32. PubMed ID: 18033292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superfluid to Mott-insulator transition in Bose-Hubbard models.
    Capello M; Becca F; Fabrizio M; Sorella S
    Phys Rev Lett; 2007 Aug; 99(5):056402. PubMed ID: 17930773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Jaynes-Cummings model of a two-level atom in a single-mode para-Bose cavity field.
    Fakhri H; Sayyah-Fard M
    Sci Rep; 2021 Nov; 11(1):22861. PubMed ID: 34819538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anomalous quantum glass of bosons in a random potential in two dimensions.
    Wang Y; Guo W; Sandvik AW
    Phys Rev Lett; 2015 Mar; 114(10):105303. PubMed ID: 25815942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonclassical effects of a two-level spin system interacting with a two-mode cavity field via two-photon transition.
    Grinberg H
    J Phys Chem B; 2008 Dec; 112(50):16140-57. PubMed ID: 19053679
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Driven-Dissipative Supersolid in a Ring Cavity.
    Mivehvar F; Ostermann S; Piazza F; Ritsch H
    Phys Rev Lett; 2018 Mar; 120(12):123601. PubMed ID: 29694105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinguishing Quantum Phases through Cusps in Full Counting Statistics.
    Wang CY; Zhou TG; Zhou YN; Zhang P
    Phys Rev Lett; 2024 Aug; 133(8):083402. PubMed ID: 39241720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity.
    Paiva T; Scalettar R; Randeria M; Trivedi N
    Phys Rev Lett; 2010 Feb; 104(6):066406. PubMed ID: 20366841
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probing the superfluid-to-Mott insulator transition at the single-atom level.
    Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M
    Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlocal quantum fluctuations and fermionic superfluidity in the imbalanced attractive Hubbard model.
    Heikkinen MO; Kim DH; Troyer M; Törmä P
    Phys Rev Lett; 2014 Oct; 113(18):185301. PubMed ID: 25396376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectral and entanglement properties of the bosonic Haldane insulator.
    Ejima S; Lange F; Fehske H
    Phys Rev Lett; 2014 Jul; 113(2):020401. PubMed ID: 25062142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extended Bose-Hubbard Model with Cavity-Mediated Infinite-Range Interactions at Finite Temperatures.
    Chen HJ; Yu YQ; Zheng DC; Liao R
    Sci Rep; 2020 Jun; 10(1):9076. PubMed ID: 32494030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cavity-enhanced light scattering in optical lattices to probe atomic quantum statistics.
    Mekhov IB; Maschler C; Ritsch H
    Phys Rev Lett; 2007 Mar; 98(10):100402. PubMed ID: 17358515
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase-slip-induced dissipation in an atomic Bose-Hubbard system.
    McKay D; White M; Pasienski M; DeMarco B
    Nature; 2008 May; 453(7191):76-9. PubMed ID: 18451857
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chaos and flights in the atom-photon interaction in cavity QED.
    Prants SV; Edelman M; Zaslavsky GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046222. PubMed ID: 12443314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Topological edge States in the one-dimensional superlattice Bose-Hubbard model.
    Grusdt F; Höning M; Fleischhauer M
    Phys Rev Lett; 2013 Jun; 110(26):260405. PubMed ID: 23848851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.