These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Proximity-Induced Superconductivity in Monolayer MoS Trainer DJ; Wang B; Bobba F; Samuelson N; Xi X; Zasadzinski J; Nieminen J; Bansil A; Iavarone M ACS Nano; 2020 Mar; 14(3):2718-2728. PubMed ID: 31930912 [TBL] [Abstract][Full Text] [Related]
3. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene. Natterer FD; Ha J; Baek H; Zhang D; Cullen W; Zhitenev NB; Kuk Y; Stroscio JA Phys Rev B; 2016 Jan; 93(4):. PubMed ID: 27088134 [TBL] [Abstract][Full Text] [Related]
4. Tuning the Proximity Effect through Interface Engineering in a Pb/Graphene/Pt Trilayer System. Fei X; Xiao W; Yang K; Liu L; Pan J; Chen H; Zhang C; Shih CK; Du S; Gao H ACS Nano; 2016 Apr; 10(4):4520-4. PubMed ID: 27035629 [TBL] [Abstract][Full Text] [Related]
5. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope. Levy N; Zhang T; Ha J; Sharifi F; Talin AA; Kuk Y; Stroscio JA Phys Rev Lett; 2013 Mar; 110(11):117001. PubMed ID: 25166563 [TBL] [Abstract][Full Text] [Related]
6. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Park JM; Cao Y; Watanabe K; Taniguchi T; Jarillo-Herrero P Nature; 2021 Feb; 590(7845):249-255. PubMed ID: 33526935 [TBL] [Abstract][Full Text] [Related]
7. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. Di Bernardo A; Millo O; Barbone M; Alpern H; Kalcheim Y; Sassi U; Ott AK; De Fazio D; Yoon D; Amado M; Ferrari AC; Linder J; Robinson JW Nat Commun; 2017 Jan; 8():14024. PubMed ID: 28102222 [TBL] [Abstract][Full Text] [Related]
9. Evidence for unconventional superconductivity in twisted trilayer graphene. Kim H; Choi Y; Lewandowski C; Thomson A; Zhang Y; Polski R; Watanabe K; Taniguchi T; Alicea J; Nadj-Perge S Nature; 2022 Jun; 606(7914):494-500. PubMed ID: 35705819 [TBL] [Abstract][Full Text] [Related]
10. Conversion of a conventional superconductor into a topological superconductor by topological proximity effect. Trang CX; Shimamura N; Nakayama K; Souma S; Sugawara K; Watanabe I; Yamauchi K; Oguchi T; Segawa K; Takahashi T; Ando Y; Sato T Nat Commun; 2020 Jan; 11(1):159. PubMed ID: 31919356 [TBL] [Abstract][Full Text] [Related]
11. Superconductivity in bilayer graphene intercalated with alkali and alkaline earth metals. Durajski AP; Skoczylas KM; Szczȩśniak R Phys Chem Chem Phys; 2019 Mar; 21(11):5925-5931. PubMed ID: 30785457 [TBL] [Abstract][Full Text] [Related]
12. Charge-density wave in Ca-intercalated bilayer graphene induced by commensurate lattice matching. Shimizu R; Sugawara K; Kanetani K; Iwaya K; Sato T; Takahashi T; Hitosugi T Phys Rev Lett; 2015 Apr; 114(14):146103. PubMed ID: 25910139 [TBL] [Abstract][Full Text] [Related]
13. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Tian H; Gao X; Zhang Y; Che S; Xu T; Cheung P; Watanabe K; Taniguchi T; Randeria M; Zhang F; Lau CN; Bockrath MW Nature; 2023 Feb; 614(7948):440-444. PubMed ID: 36792742 [TBL] [Abstract][Full Text] [Related]
14. Kondo effect of cobalt adatoms on a graphene monolayer controlled by substrate-induced ripples. Ren J; Guo H; Pan J; Zhang YY; Wu X; Luo HG; Du S; Pantelides ST; Gao HJ Nano Lett; 2014 Jul; 14(7):4011-5. PubMed ID: 24905855 [TBL] [Abstract][Full Text] [Related]
15. An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe Sohn E; Xi X; He WY; Jiang S; Wang Z; Kang K; Park JH; Berger H; Forró L; Law KT; Shan J; Mak KF Nat Mater; 2018 Jun; 17(6):504-508. PubMed ID: 29713039 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Liu R; Lu J; Chen H; Zhao X; Hu G; Yuan X; Ren J J Phys Condens Matter; 2023 Feb; 35(14):. PubMed ID: 36689775 [TBL] [Abstract][Full Text] [Related]
17. First-principles calculations on the effect of doping and biaxial tensile strain on electron-phonon coupling in graphene. Si C; Liu Z; Duan W; Liu F Phys Rev Lett; 2013 Nov; 111(19):196802. PubMed ID: 24266482 [TBL] [Abstract][Full Text] [Related]
18. Graphene-based heterostructures with moiré superlattice that preserve the Dirac cone: a first-principles study. Kong X; Li L; Peeters FM J Phys Condens Matter; 2019 Jun; 31(25):255302. PubMed ID: 30909168 [TBL] [Abstract][Full Text] [Related]