These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 24484)
1. Mathematical modeling of lag phases in microbial growth. Pamment NB; Hall RJ; Barford JP Biotechnol Bioeng; 1978 Mar; 20(3):349-81. PubMed ID: 24484 [TBL] [Abstract][Full Text] [Related]
2. A mechanistic model of the aerobic growth of Saccharomyces cerevisiae. Bijkerk AH; Hall RJ Biotechnol Bioeng; 1977 Feb; 19(2):267-96. PubMed ID: 322740 [TBL] [Abstract][Full Text] [Related]
3. A mathematical model of Saccharomyces cerevisiae growth in response to cadmium toxicity. Hietala KA; Lynch ML; Allshouse JC; Johns CJ; Roane TM J Basic Microbiol; 2006; 46(3):196-202. PubMed ID: 16721879 [TBL] [Abstract][Full Text] [Related]
4. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. Thierie J J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654 [TBL] [Abstract][Full Text] [Related]
5. A generalized mathematical model for the growth kinetics of Saccharomyces cerevisiae with experimental determination of parameters. Peringer P; Blachere H; Corrieu G; Lane AG Biotechnol Bioeng; 1974 Apr; 16(4):431-54. PubMed ID: 4604006 [No Abstract] [Full Text] [Related]
6. Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis. Bruck J; Liebermeister W; Klipp E Genome Inform; 2008; 20():1-14. PubMed ID: 19425118 [TBL] [Abstract][Full Text] [Related]
7. Cell population modeling and parameter estimation for continuous cultures of Saccharomyces cerevisiae. Mhaskar P; Hjortsø MA; Henson MA Biotechnol Prog; 2002; 18(5):1010-26. PubMed ID: 12363352 [TBL] [Abstract][Full Text] [Related]
8. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division. Dens EJ; Bernaerts K; Standaert AR; Van Impe JF Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713 [TBL] [Abstract][Full Text] [Related]
9. Mathematical model of the cell cycle regulation in budding yeasts. Prikrylová D; Bucánek D Biomed Biochim Acta; 1990; 49(8-9):733-6. PubMed ID: 1964555 [TBL] [Abstract][Full Text] [Related]
10. Cybernetic model for the growth of Saccharomyces cerevisiae on melibiose. Gadgil CJ; Bhat PJ; Venkatesh KV Biotechnol Prog; 1996; 12(6):744-50. PubMed ID: 8983203 [TBL] [Abstract][Full Text] [Related]
11. Mathematical model of the kinetics of growth of Saccharomyces cerevisiae. Peringer P; Blachere H; Corrieu G; Lane AG Biotechnol Bioeng Symp; 1973; 0(4-1):27-42. PubMed ID: 4606789 [No Abstract] [Full Text] [Related]
12. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852 [TBL] [Abstract][Full Text] [Related]
13. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231 [TBL] [Abstract][Full Text] [Related]
14. Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. Baert K; Valero A; De Meulenaer B; Samapundo S; Ahmed MM; Bo L; Debevere J; Devlieghere F Int J Food Microbiol; 2007 Sep; 118(2):139-50. PubMed ID: 17698233 [TBL] [Abstract][Full Text] [Related]
15. Mathematical model of sugar uptake in fermenting yeasted dough. Loveday SM; Winger RJ J Agric Food Chem; 2007 Jul; 55(15):6325-9. PubMed ID: 17595109 [TBL] [Abstract][Full Text] [Related]
16. On the lag phase and initial decline of microbial growth curves. Yates GT; Smotzer T J Theor Biol; 2007 Feb; 244(3):511-7. PubMed ID: 17028032 [TBL] [Abstract][Full Text] [Related]
17. Mathematical modeling of Saccharomyces cerevisiae inactivation under high-pressure carbon dioxide. Erkmen O Nahrung; 2003 Jun; 47(3):176-80. PubMed ID: 12866619 [TBL] [Abstract][Full Text] [Related]
18. The need for consistent nomenclature and assessment of growth phases in diauxic cultures of Saccharomyces cerevisiae. Lewis JG; Northcott CJ; Learmonth RP; Attfield PV; Watson K J Gen Microbiol; 1993 Apr; 139(4):835-9. PubMed ID: 8515239 [TBL] [Abstract][Full Text] [Related]
19. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes. Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043 [TBL] [Abstract][Full Text] [Related]
20. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K Yeast; 2007 Mar; 24(3):161-70. PubMed ID: 17351907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]