These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24484149)

  • 1. Scale invariance and universality in a cold gas of indirect excitons.
    Andreev SV; Varlamov AA; Kavokin AV
    Phys Rev Lett; 2014 Jan; 112(3):036401. PubMed ID: 24484149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle correlations and evidence for dark state condensation in a cold dipolar exciton fluid.
    Shilo Y; Cohen K; Laikhtman B; West K; Pfeiffer L; Rapaport R
    Nat Commun; 2013; 4():2335. PubMed ID: 23974239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherence length of cold exciton gases in coupled quantum wells.
    Yang S; Hammack AT; Fogler MM; Butov LV; Gossard AC
    Phys Rev Lett; 2006 Nov; 97(18):187402. PubMed ID: 17155574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum Wells.
    Schinner GJ; Repp J; Schubert E; Rai AK; Reuter D; Wieck AD; Govorov AO; Holleitner AW; Kotthaus JP
    Phys Rev Lett; 2013 Mar; 110(12):127403. PubMed ID: 25166847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Bose-Einstein condensation of excitons in potential traps.
    Butov LV; Lai CW; Ivanov AL; Gossard AC; Chemla DS
    Nature; 2002 May; 417(6884):47-52. PubMed ID: 11986661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons.
    Butov LV; Ivanov AL; Imamoglu A; Littlewood PB; Shashkin AA; Dolgopolov VT; Campman KL; Gossard AC
    Phys Rev Lett; 2001 Jun; 86(24):5608-11. PubMed ID: 11415313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark High Density Dipolar Liquid of Excitons.
    Cohen K; Shilo Y; West K; Pfeiffer L; Rapaport R
    Nano Lett; 2016 Jun; 16(6):3726-31. PubMed ID: 27183418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range coherence of interacting Bose gas of dipolar excitons.
    Timofeev VB; Gorbunov AV; Larionov AV
    J Phys Condens Matter; 2007 Jul; 19(29):295209. PubMed ID: 21483061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap.
    High AA; Thomas AK; Grosso G; Remeika M; Hammack AT; Meyertholen AD; Fogler MM; Butov LV; Hanson M; Gossard AC
    Phys Rev Lett; 2009 Aug; 103(8):087403. PubMed ID: 19792761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase diagram of degenerate exciton systems.
    Lai CW; Zoch J; Gossard AC; Chemla DS
    Science; 2004 Jan; 303(5657):503-6. PubMed ID: 14739453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Bose-Einstein condensation of semiconductor excitons: the biexciton polarization effect.
    Hägele D; Pfalz S; Oestreich M
    Phys Rev Lett; 2009 Oct; 103(14):146402. PubMed ID: 19905586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between periodicity and nonlinearity of indirect excitons in coupled quantum wells.
    Xu TF; Jing XL; Luo HG; Wu WC; Liu CS
    J Phys Condens Matter; 2012 Nov; 24(45):455301. PubMed ID: 23072970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mott transition of excitons in coupled quantum wells.
    Stern M; Garmider V; Umansky V; Bar-Joseph I
    Phys Rev Lett; 2008 Jun; 100(25):256402. PubMed ID: 18643682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor excitons in new light.
    Koch SW; Kira M; Khitrova G; Gibbs HM
    Nat Mater; 2006 Jul; 5(7):523-31. PubMed ID: 16819475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density enhanced diffusion of dipolar excitons within a one-dimensional channel.
    Vögele XP; Schuh D; Wegscheider W; Kotthaus JP; Holleitner AW
    Phys Rev Lett; 2009 Sep; 103(12):126402. PubMed ID: 19792450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect Proliferation at the Quasicondensate Crossover of Two-Dimensional Dipolar Excitons Trapped in Coupled GaAs Quantum Wells.
    Dang S; Anankine R; Gomez C; Lemaître A; Holzmann M; Dubin F
    Phys Rev Lett; 2019 Mar; 122(11):117402. PubMed ID: 30951355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping Dipolar Exciton Fluids in GaN/(AlGa)N Nanostructures.
    Chiaruttini F; Guillet T; Brimont C; Jouault B; Lefebvre P; Vives J; Chenot S; Cordier Y; Damilano B; Vladimirova M
    Nano Lett; 2019 Aug; 19(8):4911-4918. PubMed ID: 31241962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.