BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 24484386)

  • 1. A new dynamic model of the wheelchair propulsion on straight and curvilinear level-ground paths.
    Chénier F; Bigras P; Aissaoui R
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(10):1031-1043. PubMed ID: 24484386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new dynamic model of the manual wheelchair for straight and curvilinear propulsion.
    Chénier F; Bigras P; Aissaoui R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975357. PubMed ID: 22275561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study.
    Theisen D; Francaux M; Fayt A; Sturbois X
    Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Portable Low-Cost System for the Metrological Verification of Wheelchair Roller Ergometers.
    Lancini M; Spada P; Muhametaj R; Klerk R; van der Woude LHV; Vegter RJK
    J Biomech Eng; 2023 Oct; 145(10):. PubMed ID: 37345978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1215-1222. PubMed ID: 29877846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Handrim Wheelchair Propulsion in the Lab: A Critical Analysis of Stationary Ergometers.
    de Klerk R; Vegter RJK; Goosey-Tolfrey VL; Mason BS; Lenton JP; Veeger DHEJ; van der Woude LHV
    IEEE Rev Biomed Eng; 2020; 13():199-211. PubMed ID: 31675342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: A Novel Servo-Driven Dual-Roller Handrim Wheelchair Ergometer.
    de Klerk R; Vegter RJK; Veeger HEJ; van der Woude LHV
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):953-960. PubMed ID: 32070986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A five-wheel wheelchair with an active-caster drive system.
    Munakata Y; Tanaka A; Wada M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650438. PubMed ID: 24187256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of an instrumented wheelchair propulsion testing and training device.
    Klaesner J; Morgan KA; Gray DB
    Assist Technol; 2014; 26(1):24-32. PubMed ID: 24800451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of wheels and tires on high-strength lightweight wheelchair propulsion cost using a robotic wheelchair tester.
    Misch J; Sprigle S
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1393-1403. PubMed ID: 34958616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the propulsion characteristics of a standard wheelchair.
    Hofstad M; Patterson PE
    J Rehabil Res Dev; 1994; 31(2):129-37. PubMed ID: 7965869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of user's actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field.
    Sauret C; Vaslin P; Lavaste F; de Saint Remy N; Cid M
    Med Eng Phys; 2013 Mar; 35(3):289-97. PubMed ID: 23200111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.
    Mason BS; Van Der Woude LH; Tolfrey K; Lenton JP; Goosey-Tolfrey VL
    Med Sci Sports Exerc; 2012 Jan; 44(1):126-34. PubMed ID: 21701409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheelchair propulsion test: development and measurement properties of a new test for manual wheelchair users.
    Askari S; Kirby RL; Parker K; Thompson K; O'Neill J
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1690-8. PubMed ID: 23499781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair pushrim kinetics measurement: A method to cancel inaccuracies due to pushrim weight and wheel camber.
    Chénier F; Aissaoui R; Gauthier C; Gagnon DH
    Med Eng Phys; 2017 Feb; 40():75-86. PubMed ID: 27988329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and physiological analysis of the GAME(Wheels) system.
    O'Connor TJ; Fitzgerald SG; Cooper RA; Thorman TA; Boninger ML
    J Rehabil Res Dev; 2002; 39(6):627-34. PubMed ID: 17943665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.