BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 24484402)

  • 1. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities.
    Omsland A; Sixt BS; Horn M; Hackstadt T
    FEMS Microbiol Rev; 2014 Jul; 38(4):779-801. PubMed ID: 24484402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic features of Protochlamydia amoebophila elementary bodies--a link between activity and infectivity in Chlamydiae.
    Sixt BS; Siegl A; Müller C; Watzka M; Wultsch A; Tziotis D; Montanaro J; Richter A; Schmitt-Kopplin P; Horn M
    PLoS Pathog; 2013; 9(8):e1003553. PubMed ID: 23950718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont.
    König L; Siegl A; Penz T; Haider S; Wentrup C; Polzin J; Mann E; Schmitz-Esser S; Domman D; Horn M
    mSystems; 2017; 2(3):. PubMed ID: 28593198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae.
    Haider S; Wagner M; Schmid MC; Sixt BS; Christian JG; Häcker G; Pichler P; Mechtler K; Müller A; Baranyi C; Toenshoff ER; Montanaro J; Horn M
    Mol Microbiol; 2010 Aug; 77(3):687-700. PubMed ID: 20545842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydiae in the Environment.
    Collingro A; Köstlbacher S; Horn M
    Trends Microbiol; 2020 Nov; 28(11):877-888. PubMed ID: 32591108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biology and intracellular life of chlamydia].
    Vivoda M; Cirković I; Aleksić D; Ranin L; Dukić S
    Med Pregl; 2011; 64(11-12):561-4. PubMed ID: 22369000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into Chlamydiae persistence: an energy metabolism strategy?
    Di Pietro M; Filardo S; De Santis F; Sessa R
    Int J Immunopathol Pharmacol; 2013; 26(2):525-8. PubMed ID: 23755769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae.
    Collingro A; Köstlbacher S; Mussmann M; Stepanauskas R; Hallam SJ; Horn M
    ISME J; 2017 Oct; 11(10):2334-2344. PubMed ID: 28644443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chlamydiae. 1].
    Del Piano M; Nicosia R; Pustorino R; Santino I; Sessa R
    Ann Ig; 1989; 1(5):1067-86. PubMed ID: 2483892
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Gitsels A; Van Lent S; Sanders N; Vanrompay D
    Crit Rev Microbiol; 2020 Feb; 46(1):100-119. PubMed ID: 32093536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic dormancy in
    Rockey DD; Wang X; Debrine A; Grieshaber N; Grieshaber SS
    Infect Immun; 2024 Feb; 92(2):e0033923. PubMed ID: 38214508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis.
    Hsia R; Ohayon H; Gounon P; Dautry-Varsat A; Bavoil PM
    Microbes Infect; 2000 Jun; 2(7):761-72. PubMed ID: 10955956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia trachomatis persistence in vitro: an overview.
    Wyrick PB
    J Infect Dis; 2010 Jun; 201 Suppl 2(Suppl 2):S88-95. PubMed ID: 20470046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis.
    Banerjee A; Nelson DE
    Pathog Dis; 2021 May; 79(5):. PubMed ID: 33930127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell.
    Szaszák M; Steven P; Shima K; Orzekowsky-Schröder R; Hüttmann G; König IR; Solbach W; Rupp J
    PLoS Pathog; 2011 Jul; 7(7):e1002108. PubMed ID: 21779161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.
    Fisher DJ; Adams NE; Maurelli AT
    Microbiology (Reading); 2015 Aug; 161(8):1648-1658. PubMed ID: 25998263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing the primordial Chlamydiae: extinct parasites of plants?
    Subtil A; Collingro A; Horn M
    Trends Plant Sci; 2014 Jan; 19(1):36-43. PubMed ID: 24210739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial Characterization of the Two ClpP Paralogs of
    Wood NA; Chung KY; Blocker AM; Rodrigues de Almeida N; Conda-Sheridan M; Fisher DJ; Ouellette SP
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Coming of Age Story: Chlamydia in the Post-Genetic Era.
    Hooppaw AJ; Fisher DJ
    Infect Immun; 2015 Dec; 84(3):612-21. PubMed ID: 26667838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.