BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24484409)

  • 1. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk.
    He M; Kravchyk K; Walter M; Kovalenko MV
    Nano Lett; 2014 Mar; 14(3):1255-62. PubMed ID: 24484409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb.
    He M; Walter M; Kravchyk KV; Erni R; Widmer R; Kovalenko MV
    Nanoscale; 2015 Jan; 7(2):455-9. PubMed ID: 25429402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries.
    Walter M; Erni R; Kovalenko MV
    Sci Rep; 2015 Feb; 5():8418. PubMed ID: 25673146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes.
    Kravchyk K; Protesescu L; Bodnarchuk MI; Krumeich F; Yarema M; Walter M; Guntlin C; Kovalenko MV
    J Am Chem Soc; 2013 Mar; 135(11):4199-202. PubMed ID: 23414392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-Sb Nanocrystals Embedded in Phosphorus as High-Performance Potassium Ion Battery Electrodes.
    Chen KT; Tuan HY
    ACS Nano; 2020 Sep; 14(9):11648-11661. PubMed ID: 32886479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries.
    Liu J; Yu L; Wu C; Wen Y; Yin K; Chiang FK; Hu R; Liu J; Sun L; Gu L; Maier J; Yu Y; Zhu M
    Nano Lett; 2017 Mar; 17(3):2034-2042. PubMed ID: 28191960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse CoSb nanocrystals as high-performance anode material for Li-ion batteries.
    Wang S; He M; Walter M; Kravchyk KV; Kovalenko MV
    Chem Commun (Camb); 2020 Nov; 56(89):13872-13875. PubMed ID: 33090131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries.
    Kravchyk KV; Kovalenko MV; Bodnarchuk MI
    Sci Rep; 2020 Feb; 10(1):2554. PubMed ID: 32054956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling 100C Fast-Charging Bulk Bi Anodes for Na-Ion Batteries.
    Kim YH; An JH; Kim SY; Li X; Song EJ; Park JH; Chung KY; Choi YS; Scanlon DO; Ahn HJ; Lee JC
    Adv Mater; 2022 Jul; 34(27):e2201446. PubMed ID: 35524951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes.
    Cui C; Xu J; Zhang Y; Wei Z; Mao M; Lian X; Wang S; Yang C; Fan X; Ma J; Wang C
    Nano Lett; 2019 Jan; 19(1):538-544. PubMed ID: 30550291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexagonal Sb Nanocrystals as High-Capacity and Long-Cycle Anode Materials for Sodium-Ion Batteries.
    Zhang N; Chen X; Xu J; He P; Ding X
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26728-26736. PubMed ID: 37218657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes.
    Qiu S; Wu X; Xiao L; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1337-43. PubMed ID: 26710079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes.
    Dubey RJ; Sasikumar PVW; Cerboni N; Aebli M; Krumeich F; Blugan G; Kravchyk KV; Graule T; Kovalenko MV
    Nanoscale; 2020 Jul; 12(25):13540-13547. PubMed ID: 32555828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries.
    Chai Y; Du Y; Li L; Wang N
    Nanotechnology; 2020 May; 31(21):215402. PubMed ID: 31986495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries.
    Bian X; Dong Y; Zhao D; Ma X; Qiu M; Xu J; Jiao L; Cheng F; Zhang N
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3554-3562. PubMed ID: 31886641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt Oxide 2D Nanosheets Formed at a Polarized Liquid|Liquid Interface toward High-Performance Li-Ion and Na-Ion Battery Anodes.
    Konkena B; Kalapu C; Kaur H; Holzinger A; Geaney H; Nicolosi V; Scanlon MD; Coleman JN
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58320-58332. PubMed ID: 38052006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries.
    Ramireddy T; Sharma N; Xing T; Chen Y; Leforestier J; Glushenkov AM
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30152-30164. PubMed ID: 27753471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical MoS
    Tang W; Wang X; Zhong Y; Xie D; Zhang X; Xia X; Wu J; Gu C; Tu J
    Chemistry; 2018 Aug; 24(43):11220-11226. PubMed ID: 29870590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dealloying-lithiation/delithiation-realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries.
    Chen R; Xue X; Lu J; Chen T; Hu Y; Ma L; Zhu G; Jin Z
    Nanoscale; 2019 May; 11(18):8803-8811. PubMed ID: 30998229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.