These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 24484527)
1. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid). Tao Y; Dai J; Kong Y; Sha Y Anal Chem; 2014 Mar; 86(5):2633-9. PubMed ID: 24484527 [TBL] [Abstract][Full Text] [Related]
2. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
3. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
4. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
5. An electrochemical and computational study for discrimination of D- and L-cystine by reduced graphene oxide/β-cyclodextrin. Zor E; Bingol H; Ramanaviciene A; Ramanavicius A; Ersoz M Analyst; 2015 Jan; 140(1):313-21. PubMed ID: 25382195 [TBL] [Abstract][Full Text] [Related]
6. Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan. Liu X; Luo L; Ding Y; Ye D Bioelectrochemistry; 2011 Aug; 82(1):38-45. PubMed ID: 21640670 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Chen Q; Zhou J; Han Q; Wang Y; Fu Y Colloids Surf B Biointerfaces; 2012 Apr; 92():130-5. PubMed ID: 22169472 [TBL] [Abstract][Full Text] [Related]
8. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Song J; Yang C; Ma J; Han Q; Ran P; Fu Y Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758 [TBL] [Abstract][Full Text] [Related]
9. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
10. Selective recognition of D-tryptophan from d/l-tryptophan mixtures in the presence of Cu(II) by electropolymerized L-lysine film. Wang F; Gong W; Wang L; Chen Z Anal Biochem; 2016 Jan; 492():30-3. PubMed ID: 26364949 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322 [TBL] [Abstract][Full Text] [Related]
13. Chiral Sensing of Tryptophan Enantiomers Based on the Enzyme Mimics of β-Cyclodextrin-Modified Sulfur Quantum Dots. Jiang W; He R; Lv H; He X; Wang L; Wei Y ACS Sens; 2023 Nov; 8(11):4264-4271. PubMed ID: 37997656 [TBL] [Abstract][Full Text] [Related]
14. Diastereomeric molecular recognition and binding behavior of bile acids by L/D-tryptophan-modified beta-cyclodextrins. Wang H; Cao R; Ke CF; Liu Y; Wada T; Inoue Y J Org Chem; 2005 Oct; 70(22):8703-11. PubMed ID: 16238298 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
16. Enantioselective recognition of tryptophan isomers with molecularly imprinted overoxidized polypyrrole/poly(p-aminobenzene sulfonic acid) modified electrode. Gong L; Li S; Yin Z; Li K; Gu J; Wu D; Kong Y Chirality; 2021 Apr; 33(4):176-183. PubMed ID: 33567153 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Hou Y; Liang J; Kuang X; Kuang R Carbohydr Polym; 2022 Aug; 290():119474. PubMed ID: 35550750 [TBL] [Abstract][Full Text] [Related]
19. Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Niu X; Yang X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Bioelectrochemistry; 2019 Oct; 129():189-198. PubMed ID: 31195330 [TBL] [Abstract][Full Text] [Related]
20. Integration of β-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of Vitamin C at physiological pH: A new electrochemical approach. Shadjou N; Hasanzadeh M; Talebi F; Marjani AP Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():666-674. PubMed ID: 27287166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]