These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

695 related articles for article (PubMed ID: 24484692)

  • 41. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma.
    Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D
    J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The hydrophilicity vs. ion interaction selectivity plot revisited: The effect of mobile phase pH and buffer concentration on hydrophilic interaction liquid chromatography selectivity behavior.
    Iverson CD; Gu X; Lucy CA
    J Chromatogr A; 2016 Aug; 1458():82-9. PubMed ID: 27388658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Preparation of xylitol and maltitol modified silica as novel stationary phases for hydrophilic interaction liquid chromatography and evaluation of their separation performance].
    Yong T; Wu F; Xiao H; Wan B
    Se Pu; 2015 Sep; 33(9):910-6. PubMed ID: 26753275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click beta-cyclodextrin" stationary phase.
    Guo Z; Jin Y; Liang T; Liu Y; Xu Q; Liang X; Lei A
    J Chromatogr A; 2009 Jan; 1216(2):257-63. PubMed ID: 19070861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [One-pot synthesis of a poly(styrene-acrylic acid) copolymer-modified silica stationary phase and its applications in mixed-mode liquid chromatography].
    Wang XQ; Cui J; Gu YM; Wang S; Zhou J; Wang SD
    Se Pu; 2023 Jul; 41(7):562-571. PubMed ID: 37387277
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.
    Heaton JC; Russell JJ; Underwood T; Boughtflower R; McCalley DV
    J Chromatogr A; 2014 Jun; 1347():39-48. PubMed ID: 24813934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DTT stationary phase.
    Wang Q; Long Y; Yao L; Xu L; Shi ZG; Xu L
    Talanta; 2016; 146():442-51. PubMed ID: 26695288
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and chromatographic evaluation of a novel phosphate ester-bonded stationary phase with complexation and hydrophobic interactions retention mechanism.
    Cheng XD; Peng XT; Yu QW; Yuan BF; Feng YQ
    J Chromatogr A; 2013 Aug; 1302():81-7. PubMed ID: 23827467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A click tyrosine zwitterionic stationary phases for hydrophilic interaction liquid chromatography.
    Farhadpour M; Maghari S; Rezadoost H; Bagheri M; Ghassempour A
    J Chromatogr A; 2020 Jun; 1621():461045. PubMed ID: 32201036
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds.
    Jandera P; Bocian S; Molíková M; Buszewski B
    J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel zwitterionic HILIC stationary phase based on "thiol-ene" click chemistry between cysteine and vinyl silica.
    Shen A; Guo Z; Yu L; Cao L; Liang X
    Chem Commun (Camb); 2011 Apr; 47(15):4550-2. PubMed ID: 21409214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adjusting the chromatographic properties of poly(ionic liquid)-modified stationary phases by substitution on the imidazolium cation.
    Wang J; Tang Y; Chu H; Shen J; Wang C; Wei Y
    J Sep Sci; 2020 Jul; 43(14):2766-2772. PubMed ID: 32419326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dicationic imidazole ionic liquid stationary phase for preservative detection and its application under mixed mode of HILIC/RPLC/IEC.
    Yang H; Peng J; Peng H; Zeng H; Yu J; Wu J; Wang X
    Anal Chim Acta; 2024 May; 1303():342504. PubMed ID: 38609259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigation of pi-pi and ion-dipole interactions on 1-allyl-3-butylimidazolium ionic liquid-modified silica stationary phase in reversed-phase liquid chromatography.
    Qiu H; Takafuji M; Liu X; Jiang S; Ihara H
    J Chromatogr A; 2010 Aug; 1217(32):5190-6. PubMed ID: 20580007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A crosslinked, low pH-stable, mixed-mode cation-exchange like stationary phase made using the thiol-yne click reaction.
    Shields EP; Weber SG
    J Chromatogr A; 2020 May; 1618():460851. PubMed ID: 32008826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode.
    Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S
    Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromatographic evaluation and application of silica based azide-modified stationary phase under hydrophilic interaction liquid Chromatography mode.
    Zhao Y; Li X; Guo Z; Liang X
    Se Pu; 2015 Sep; 33(9):922-8. PubMed ID: 26753277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid quantification of imidazolium-based ionic liquids by hydrophilic interaction liquid chromatography: Methodology and an investigation of the retention mechanisms.
    Hawkins CA; Rud A; Guthrie ML; Dietz ML
    J Chromatogr A; 2015 Jun; 1400():54-64. PubMed ID: 25979537
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extent of the influence of phosphate buffer and ionic liquids on the reduction of the silanol effect in a C18 stationary phase.
    Carda-Broch S; García-Alvarez-Coque MC; Ruiz-Angel MJ
    J Chromatogr A; 2018 Jul; 1559():112-117. PubMed ID: 28602502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of retention mechanisms on an octadecyl-bonded silica column using ionic liquid-based mobile phase in analysis of cytostatic drugs by liquid chromatography.
    Treder N; Olędzka I; Roszkowska A; Bączek T; Plenis A
    J Chromatogr A; 2021 Aug; 1651():462257. PubMed ID: 34090057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.