These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 24484765)

  • 21. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.
    Udomsri S; Martin AR; Fransson TH
    Waste Manag; 2010 Jul; 30(7):1414-22. PubMed ID: 20207531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.
    Dong J; Tang Y; Nzihou A; Chi Y; Weiss-Hortala E; Ni M
    Sci Total Environ; 2018 Jun; 626():744-753. PubMed ID: 29396338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives.
    Perkoulidis G; Papageorgiou A; Karagiannidis A; Kalogirou S
    Waste Manag; 2010 Jul; 30(7):1395-406. PubMed ID: 20061131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental impacts of waste incineration in a regional system (Emilia Romagna, Italy) evaluated from a life cycle perspective.
    Morselli L; De Robertis C; Luzi J; Passarini F; Vassura I
    J Hazard Mater; 2008 Nov; 159(2-3):505-11. PubMed ID: 18384954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact.
    Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A
    Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.
    Fernández-González JM; Grindlay AL; Serrano-Bernardo F; Rodríguez-Rojas MI; Zamorano M
    Waste Manag; 2017 Sep; 67():360-374. PubMed ID: 28501263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life cycle assessment of four municipal solid waste management scenarios in China.
    Hong J; Li X; Zhaojie C
    Waste Manag; 2010 Nov; 30(11):2362-9. PubMed ID: 20427172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental profile of latent energy storage materials applied to industrial systems.
    López-Sabirón AM; Aranda-Usón A; Mainar-Toledo MD; Ferreira VJ; Ferreira G
    Sci Total Environ; 2014 Mar; 473-474():565-75. PubMed ID: 24394366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Thermovalorization: new technologies, impacts and mitigation strategies].
    Buffoli M; Capolongo S; Loconte VL; Signorelli C
    Ann Ig; 2012; 24(2):167-78. PubMed ID: 22755503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is it better to burn or bury waste for clean electricity generation?
    Kaplan PO; Decarolis J; Thorneloe S
    Environ Sci Technol; 2009 Mar; 43(6):1711-7. PubMed ID: 19368161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China.
    Chen D; Christensen TH
    Waste Manag Res; 2010 Jun; 28(6):508-19. PubMed ID: 20375128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review and meta-analysis of 82 studies on end-of-life management methods for source separated organics.
    Morris J; Scott Matthews H; Morawski C
    Waste Manag; 2013 Mar; 33(3):545-51. PubMed ID: 22964362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.
    Beylot A; Villeneuve J
    Waste Manag; 2013 Dec; 33(12):2781-8. PubMed ID: 23910245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.
    Panepinto D; Genon G
    Waste Manag Res; 2014 Jul; 32(7):670-80. PubMed ID: 24942837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada.
    Baxter J; Ho Y; Rollins Y; Maclaren V
    Waste Manag; 2016 Apr; 50():75-85. PubMed ID: 26951720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of life cycle assessment for estimating impacts of waste-to-energy technologies in solid waste management systems: the case of Buenos Aires, Argentina.
    Galván SL; Bielsa RO
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):9992-10012. PubMed ID: 37697196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow.
    Tunesi S
    Waste Manag; 2011 Mar; 31(3):561-71. PubMed ID: 20937556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.
    Jambeck J; Weitz K; Solo-Gabriele H; Townsend T; Thorneloe S
    Waste Manag; 2007; 27(8):S21-8. PubMed ID: 17416510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LCA and economic evaluation of landfill leachate and gas technologies.
    Damgaard A; Manfredi S; Merrild H; Stensøe S; Christensen TH
    Waste Manag; 2011 Jul; 31(7):1532-41. PubMed ID: 21435856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.