These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 24484765)
61. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511 [TBL] [Abstract][Full Text] [Related]
62. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy. Cherubini F; Bargigli S; Ulgiati S Waste Manag; 2008 Dec; 28(12):2552-64. PubMed ID: 18230413 [TBL] [Abstract][Full Text] [Related]
63. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors. Townsend AK; Webber ME Waste Manag; 2012 Jul; 32(7):1366-77. PubMed ID: 22425189 [TBL] [Abstract][Full Text] [Related]
64. The status of waste management and waste to energy for district heating in South Korea. Thanos Bourtsalas AC; Seo Y; Tanvir Alam M; Seo YC Waste Manag; 2019 Feb; 85():304-316. PubMed ID: 30803585 [TBL] [Abstract][Full Text] [Related]
65. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. Zhao W; van der Voet E; Zhang Y; Huppes G Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268 [TBL] [Abstract][Full Text] [Related]
66. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study. Biganzoli L; Racanella G; Marras R; Rigamonti L Waste Manag; 2015 Jan; 35():127-34. PubMed ID: 25465510 [TBL] [Abstract][Full Text] [Related]
67. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
68. Environmental assessment of carbon capture and storage (CCS) as a post-treatment technology in waste incineration. Bisinella V; Hulgaard T; Riber C; Damgaard A; Christensen TH Waste Manag; 2021 Jun; 128():99-113. PubMed ID: 33975140 [TBL] [Abstract][Full Text] [Related]
69. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150 [TBL] [Abstract][Full Text] [Related]
70. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations. Astrup TF; Tonini D; Turconi R; Boldrin A Waste Manag; 2015 Mar; 37():104-15. PubMed ID: 25052337 [TBL] [Abstract][Full Text] [Related]
71. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition. Hu X; Zhu J; Ding Q J Hazard Mater; 2011 Jul; 191(1-3):258-68. PubMed ID: 21571422 [TBL] [Abstract][Full Text] [Related]
72. Sustainable management of municipal solid waste through waste-to-energy technologies. Varjani S; Shahbeig H; Popat K; Patel Z; Vyas S; Shah AV; Barceló D; Hao Ngo H; Sonne C; Shiung Lam S; Aghbashlo M; Tabatabaei M Bioresour Technol; 2022 Jul; 355():127247. PubMed ID: 35490955 [TBL] [Abstract][Full Text] [Related]
73. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia. Bezama A; Douglas C; Méndez J; Szarka N; Muñoz E; Navia R; Schock S; Konrad O; Ulloa C Waste Manag Res; 2013 Oct; 31(10 Suppl):67-74. PubMed ID: 23988463 [TBL] [Abstract][Full Text] [Related]
74. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Arena U; Ardolino F; Di Gregorio F Waste Manag; 2015 Jul; 41():60-74. PubMed ID: 25899036 [TBL] [Abstract][Full Text] [Related]
75. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery. Wang L; Templer R; Murphy RJ Bioresour Technol; 2012 Sep; 120():89-98. PubMed ID: 22784958 [TBL] [Abstract][Full Text] [Related]
76. From "farm to fork" strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and green house gas emissions. Girgenti V; Peano C; Baudino C; Tecco N Sci Total Environ; 2014 Mar; 473-474():48-53. PubMed ID: 24361447 [TBL] [Abstract][Full Text] [Related]
77. Influence of flue gas cleaning system on the energetic efficiency and on the economic performance of a WTE plant. Poggio A; Grieco E Waste Manag; 2010 Jul; 30(7):1355-61. PubMed ID: 19822412 [TBL] [Abstract][Full Text] [Related]
78. Environmental impacts of a large-scale incinerator with mixed MSW of high water content from a LCA perspective. Lou Z; Bilitewski B; Zhu N; Chai X; Li B; Zhao Y J Environ Sci (China); 2015 Apr; 30():173-9. PubMed ID: 25872724 [TBL] [Abstract][Full Text] [Related]
79. Life cycle assessment of bagasse waste management options. Kiatkittipong W; Wongsuchoto P; Pavasant P Waste Manag; 2009 May; 29(5):1628-33. PubMed ID: 19136243 [TBL] [Abstract][Full Text] [Related]
80. A screening life cycle metric to benchmark the environmental sustainability of waste management systems. Kaufman SM; Krishnan N; Themelis NJ Environ Sci Technol; 2010 Aug; 44(15):5949-55. PubMed ID: 20666561 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]