These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24485224)

  • 1. The case for the reservoir-wave approach.
    Tyberg JV; Bouwmeester JC; Parker KH; Shrive NG; Wang JJ
    Int J Cardiol; 2014 Mar; 172(2):299-306. PubMed ID: 24485224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave propagation and reflection in the canine aorta: analysis using a reservoir-wave approach.
    Wang JJ; Shrive NG; Parker KH; Hughes AD; Tyberg JV
    Can J Cardiol; 2011; 27(3):389.e1-10. PubMed ID: 21601775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave intensity analysis and the development of the reservoir-wave approach.
    Tyberg JV; Davies JE; Wang Z; Whitelaw WA; Flewitt JA; Shrive NG; Francis DP; Hughes AD; Parker KH; Wang JJ
    Med Biol Eng Comput; 2009 Feb; 47(2):221-32. PubMed ID: 19189147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reservoir-wave paradigm introduces error into arterial wave analysis: a computer modelling and in-vivo study.
    Mynard JP; Penny DJ; Davidson MR; Smolich JJ
    J Hypertens; 2012 Apr; 30(4):734-43. PubMed ID: 22278142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reservoir and reservoir-less pressure effects on arterial waves in the canine aorta.
    Borlotti A; Park C; Parker KH; Khir AW
    J Hypertens; 2015 Mar; 33(3):564-74; discussion 574. PubMed ID: 25462708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity.
    Westerhof BE; van den Wijngaard JP; Murgo JP; Westerhof N
    Hypertension; 2008 Sep; 52(3):478-83. PubMed ID: 18695144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave intensity in the ascending aorta: effects of arterial occlusion.
    Khir AW; Parker KH
    J Biomech; 2005 Apr; 38(4):647-55. PubMed ID: 15713284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave Separation, Wave Intensity, the Reservoir-Wave Concept, and the Instantaneous Wave-Free Ratio: Presumptions and Principles.
    Westerhof N; Segers P; Westerhof BE
    Hypertension; 2015 Jul; 66(1):93-8. PubMed ID: 26015448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arterial Stiffness Gradient, Systemic Reflection Coefficient, and Pulsatile Pressure Wave Transmission in Essential Hypertension.
    London GM; Pannier B; Safar ME
    Hypertension; 2019 Dec; 74(6):1366-1372. PubMed ID: 31679422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of isolated systolic hypertension in the elderly.
    Nichols WW; Nicolini FA; Pepine CJ
    J Hypertens Suppl; 1992 Aug; 10(6):S73-7. PubMed ID: 1432333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemic arterial pressure wave reflections during acute hemorrhage.
    Dark P; Little R; Nirmalan M; Purdy J
    Crit Care Med; 2006 May; 34(5):1497-505. PubMed ID: 16540954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aortic reservoir-wave as a paradigm for arterial haemodynamics: insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation.
    Segers P; Taelman L; Degroote J; Bols J; Vierendeels J
    J Hypertens; 2015 Mar; 33(3):554-63; discussion 563. PubMed ID: 25479031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low pulse pressure with high pulsatile external left ventricular power: influence of aortic waves.
    Pahlevan NM; Gharib M
    J Biomech; 2011 Jul; 44(11):2083-9. PubMed ID: 21679951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index.
    Davies JE; Baksi J; Francis DP; Hadjiloizou N; Whinnett ZI; Manisty CH; Aguado-Sierra J; Foale RA; Malik IS; Tyberg JV; Parker KH; Mayet J; Hughes AD
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H580-6. PubMed ID: 20008272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries.
    Aguado-Sierra J; Alastruey J; Wang JJ; Hadjiloizou N; Davies J; Parker KH
    Proc Inst Mech Eng H; 2008 May; 222(4):403-16. PubMed ID: 18595353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards new indices of arterial stiffness using systolic pulse contour analysis: a theoretical point of view.
    Chemla D; Plamann K; Nitenberg A
    J Cardiovasc Pharmacol; 2008 Feb; 51(2):111-7. PubMed ID: 18287877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forward and backward waves in the arterial system: impedance or wave intensity analysis?
    Hughes AD; Parker KH
    Med Biol Eng Comput; 2009 Feb; 47(2):207-10. PubMed ID: 19198913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical electrical and hydraulic Windkessel models validate physiological calculations of Windkessel (reservoir) pressure.
    Sridharan SS; Burrowes LM; Bouwmeester JC; Wang JJ; Shrive NG; Tyberg JV
    Can J Physiol Pharmacol; 2012 May; 90(5):579-85. PubMed ID: 22471992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical achievements of impedance analysis.
    Mitchell GF
    Med Biol Eng Comput; 2009 Feb; 47(2):153-63. PubMed ID: 18853214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.