These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24485224)
21. A physiologically relevant, simple outflow boundary model for truncated vasculature. Pahlevan NM; Amlani F; Hossein Gorji M; Hussain F; Gharib M Ann Biomed Eng; 2011 May; 39(5):1470-81. PubMed ID: 21240638 [TBL] [Abstract][Full Text] [Related]
22. Reservoir and excess pressures predict cardiovascular events in high-risk patients. Hametner B; Wassertheurer S; Hughes AD; Parker KH; Weber T; Eber B Int J Cardiol; 2014 Jan; 171(1):31-6. PubMed ID: 24315153 [TBL] [Abstract][Full Text] [Related]
23. A review of methods to determine the functional arterial parameters stiffness and resistance. Westerhof N; Westerhof BE J Hypertens; 2013 Sep; 31(9):1769-75. PubMed ID: 23777762 [TBL] [Abstract][Full Text] [Related]
24. Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Wang JJ; Flewitt JA; Shrive NG; Parker KH; Tyberg JV Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H154-62. PubMed ID: 16113064 [TBL] [Abstract][Full Text] [Related]
25. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis. Lu PJ; Yang CF; Wu MY; Hung CH; Chan MY; Hsu TC J Thorac Cardiovasc Surg; 2011 Nov; 142(5):1205-13. PubMed ID: 21477820 [TBL] [Abstract][Full Text] [Related]
26. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model. Feng J; Khir AW Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362 [TBL] [Abstract][Full Text] [Related]
27. On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis. Alastruey J Cardiovasc Eng; 2010 Dec; 10(4):176-89. PubMed ID: 21165776 [TBL] [Abstract][Full Text] [Related]
28. Wave speed and intensity in the canine aorta: analysis with and without the Windkessel-wave system. Borlotti A; Khir A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():219-22. PubMed ID: 22254289 [TBL] [Abstract][Full Text] [Related]
29. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power. Mynard JP; Smolich JJ Am J Physiol Heart Circ Physiol; 2016 Apr; 310(8):H1026-38. PubMed ID: 26873972 [TBL] [Abstract][Full Text] [Related]
30. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics. Mynard JP; Smolich JJ Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H307-18. PubMed ID: 24878775 [TBL] [Abstract][Full Text] [Related]
31. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion. Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214 [TBL] [Abstract][Full Text] [Related]
32. MRI quantification of the role of the reflected pressure wave on coronary and ascending aortic blood flow. Laffon E; Galy-Lacour C; Laurent F; Ducassou D; Marthan R Physiol Meas; 2003 Aug; 24(3):681-92. PubMed ID: 14509306 [TBL] [Abstract][Full Text] [Related]
33. Quantification of forward and backward arterial waves by model-based analysis of aortic and femoral artery pressure waveforms. Swamy G; Olivier NB; Mukkamala R Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():817-20. PubMed ID: 19162782 [TBL] [Abstract][Full Text] [Related]
34. Attenuation of reflected waves in man during retrograde propagation from femoral artery to proximal aorta. Baksi AJ; Davies JE; Hadjiloizou N; Baruah R; Unsworth B; Foale RA; Korolkova O; Siggers JH; Francis DP; Mayet J; Parker KH; Hughes AD Int J Cardiol; 2016 Jan; 202():441-5. PubMed ID: 26436672 [TBL] [Abstract][Full Text] [Related]
35. [Aspects of vascular physiology in clinical and vascular surgical practice: basic principles of vascular mechanics]. Nocke H; Meyer F; Lessmann V Zentralbl Chir; 2014 Oct; 139(5):499-507. PubMed ID: 23325520 [TBL] [Abstract][Full Text] [Related]
36. Alterations in aortic wave reflection with vasodilation and vasoconstriction in anaesthetized dogs. Wang JJ; Bouwmeester JC; Belenkie I; Shrive NG; Tyberg JV Can J Cardiol; 2013 Feb; 29(2):243-53. PubMed ID: 22622002 [TBL] [Abstract][Full Text] [Related]
37. Determination of wave speed and wave separation in the arteries using diameter and velocity. Feng J; Khir AW J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359 [TBL] [Abstract][Full Text] [Related]
38. Resolving the hemodynamic inverse problem. Quick CM; Berger DS; Stewart RH; Laine GA; Hartley CJ; Noordergraaf A IEEE Trans Biomed Eng; 2006 Mar; 53(3):361-8. PubMed ID: 16532762 [TBL] [Abstract][Full Text] [Related]
39. Effect of an abdominal aortic aneurysm on wave reflection in the aorta. Swillens A; Lanoye L; De Backer J; Stergiopulos N; Verdonck PR; Vermassen F; Segers P IEEE Trans Biomed Eng; 2008 May; 55(5):1602-11. PubMed ID: 18440906 [TBL] [Abstract][Full Text] [Related]