These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 24485300)
21. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Ma Y; Rajkumar M; Freitas H Chemosphere; 2009 May; 75(6):719-25. PubMed ID: 19232424 [TBL] [Abstract][Full Text] [Related]
22. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. Flores-Vargas RD; O'Hara GW J Appl Microbiol; 2006 May; 100(5):946-54. PubMed ID: 16629995 [TBL] [Abstract][Full Text] [Related]
23. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. Bal HB; Das S; Dangar TK; Adhya TK J Basic Microbiol; 2013 Dec; 53(12):972-84. PubMed ID: 23681643 [TBL] [Abstract][Full Text] [Related]
24. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Zhang WH; Huang Z; He LY; Sheng XF Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839 [TBL] [Abstract][Full Text] [Related]
25. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. Kannan V; Sureendar R J Basic Microbiol; 2009 Apr; 49(2):158-64. PubMed ID: 18792056 [TBL] [Abstract][Full Text] [Related]
26. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234 [TBL] [Abstract][Full Text] [Related]
27. Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. Das S; Jean JS; Kar S; Chou ML; Chen CY J Hazard Mater; 2014 May; 272():112-20. PubMed ID: 24685527 [TBL] [Abstract][Full Text] [Related]
28. Siderophore cross-utilization amongst nodule isolates of the cowpea miscellany group and its effect on plant growth in the presence of antagonistic organisms. Joshi FR; Kholiya SP; Archana G; Desai AJ Microbiol Res; 2008; 163(5):564-70. PubMed ID: 16962753 [TBL] [Abstract][Full Text] [Related]
29. Culturable bacteria in hydroponic cultures of moss Racomitrium japonicum and their potential as biofertilizers for moss production. Tani A; Akita M; Murase H; Kimbara K J Biosci Bioeng; 2011 Jul; 112(1):32-9. PubMed ID: 21498111 [TBL] [Abstract][Full Text] [Related]
30. Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomic evidence for the cold adaptation and plant growth promotion. Mukhia S; Kumar A; Kumari P; Kumar R Microbiol Res; 2022 Jul; 260():127049. PubMed ID: 35504236 [TBL] [Abstract][Full Text] [Related]
31. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. da Costa PB; Granada CE; Ambrosini A; Moreira F; de Souza R; dos Passos JF; Arruda L; Passaglia LM PLoS One; 2014; 9(12):e116020. PubMed ID: 25542031 [TBL] [Abstract][Full Text] [Related]
32. [Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens]. Sun L; He L; Zhang Y; Zhang W; Wang Q; Sheng X Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1360-6. PubMed ID: 20069883 [TBL] [Abstract][Full Text] [Related]
33. Evaluating the use of plant hormones and biostimulators in forage pastures to enhance shoot dry biomass production by perennial ryegrass (Lolium perenne L.). Zaman M; Kurepin LV; Catto W; Pharis RP J Sci Food Agric; 2016 Feb; 96(3):715-26. PubMed ID: 25919035 [TBL] [Abstract][Full Text] [Related]
34. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Aserse AA; Räsänen LA; Aseffa F; Hailemariam A; Lindström K Appl Microbiol Biotechnol; 2013 Dec; 97(23):10117-34. PubMed ID: 24196581 [TBL] [Abstract][Full Text] [Related]
35. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Sachdev D; Nema P; Dhakephalkar P; Zinjarde S; Chopade B Microbiol Res; 2010 Oct; 165(8):627-38. PubMed ID: 20116982 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Tank N; Saraf M J Basic Microbiol; 2009 Apr; 49(2):195-204. PubMed ID: 18798171 [TBL] [Abstract][Full Text] [Related]
37. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. Sheng X; Sun L; Huang Z; He L; Zhang W; Chen Z J Environ Manage; 2012 Jul; 103():58-64. PubMed ID: 22459071 [TBL] [Abstract][Full Text] [Related]
38. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Rokhbakhsh-Zamin F; Sachdev D; Kazemi-Pour N; Engineer A; Pardesi KR; Zinjarde S; Dhakephalkar PK; Chopade BA J Microbiol Biotechnol; 2011 Jun; 21(6):556-66. PubMed ID: 21715961 [TBL] [Abstract][Full Text] [Related]
39. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Rajkumar M; Vara Prasad MN; Freitas H; Ae N Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893 [TBL] [Abstract][Full Text] [Related]
40. Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). Han J; Song Y; Liu Z; Hu Y FEMS Microbiol Lett; 2011 Sep; 322(1):15-24. PubMed ID: 21623895 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]