These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
615 related articles for article (PubMed ID: 24485390)
1. A new hybrid intelligent system for accurate detection of Parkinson's disease. Hariharan M; Polat K; Sindhu R Comput Methods Programs Biomed; 2014 Mar; 113(3):904-13. PubMed ID: 24485390 [TBL] [Abstract][Full Text] [Related]
2. Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. Salvatore C; Cerasa A; Castiglioni I; Gallivanone F; Augimeri A; Lopez M; Arabia G; Morelli M; Gilardi MC; Quattrone A J Neurosci Methods; 2014 Jan; 222():230-7. PubMed ID: 24286700 [TBL] [Abstract][Full Text] [Related]
3. Feature selection and extraction for class prediction in dysphonia measures analysis:A case study on Parkinson's disease speech rehabilitation. El Moudden I; Ouzir M; ElBernoussi S Technol Health Care; 2017 Aug; 25(4):693-708. PubMed ID: 28826194 [TBL] [Abstract][Full Text] [Related]
4. Accurate telemonitoring of Parkinson's disease diagnosis using robust inference system. Mandal I; Sairam N Int J Med Inform; 2013 May; 82(5):359-77. PubMed ID: 23182747 [TBL] [Abstract][Full Text] [Related]
5. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease. Tsanas A; Little MA; McSharry PE; Spielman J; Ramig LO IEEE Trans Biomed Eng; 2012 May; 59(5):1264-71. PubMed ID: 22249592 [TBL] [Abstract][Full Text] [Related]
6. The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Yan Z; Wang Z; Xie H Comput Methods Programs Biomed; 2008 Jun; 90(3):275-84. PubMed ID: 18295367 [TBL] [Abstract][Full Text] [Related]
7. Effective dysphonia detection using feature dimension reduction and kernel density estimation for patients with Parkinson's disease. Yang S; Zheng F; Luo X; Cai S; Wu Y; Liu K; Wu M; Chen J; Krishnan S PLoS One; 2014; 9(2):e88825. PubMed ID: 24586406 [TBL] [Abstract][Full Text] [Related]
8. Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease. Erdogdu Sakar B; Serbes G; Sakar CO PLoS One; 2017; 12(8):e0182428. PubMed ID: 28792979 [TBL] [Abstract][Full Text] [Related]
9. Computer-Aided Diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network. Hirschauer TJ; Adeli H; Buford JA J Med Syst; 2015 Nov; 39(11):179. PubMed ID: 26420585 [TBL] [Abstract][Full Text] [Related]
10. Feature selection for accelerometer-based posture analysis in Parkinson's disease. Palmerini L; Rocchi L; Mellone S; Valzania F; Chiari L IEEE Trans Inf Technol Biomed; 2011 May; 15(3):481-90. PubMed ID: 21349795 [TBL] [Abstract][Full Text] [Related]
12. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
13. Analysis of in-air movement in handwriting: A novel marker for Parkinson's disease. Drotár P; Mekyska J; Rektorová I; Masarová L; Smékal Z; Faundez-Zanuy M Comput Methods Programs Biomed; 2014 Dec; 117(3):405-11. PubMed ID: 25261003 [TBL] [Abstract][Full Text] [Related]
14. Accurate telemonitoring of Parkinson's disease progression by noninvasive speech tests. Tsanas A; Little MA; McSharry PE; Ramig LO IEEE Trans Biomed Eng; 2010 Apr; 57(4):884-93. PubMed ID: 19932995 [TBL] [Abstract][Full Text] [Related]
15. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Siuly S; Li Y Comput Methods Programs Biomed; 2015 Apr; 119(1):29-42. PubMed ID: 25704869 [TBL] [Abstract][Full Text] [Related]
16. Automated Parkinson's disease recognition based on statistical pooling method using acoustic features. Yaman O; Ertam F; Tuncer T Med Hypotheses; 2020 Feb; 135():109483. PubMed ID: 31954340 [TBL] [Abstract][Full Text] [Related]
17. Parkinson's disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study. Juutinen M; Wang C; Zhu J; Haladjian J; Ruokolainen J; Puustinen J; Vehkaoja A PLoS One; 2020; 15(7):e0236258. PubMed ID: 32701955 [TBL] [Abstract][Full Text] [Related]
18. Performance analysis of different classification algorithms using different feature selection methods on Parkinson's disease detection. Cigdem O; Demirel H J Neurosci Methods; 2018 Nov; 309():81-90. PubMed ID: 30176256 [TBL] [Abstract][Full Text] [Related]
19. A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM. Peker M J Med Syst; 2016 May; 40(5):116. PubMed ID: 27000777 [TBL] [Abstract][Full Text] [Related]