These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24485750)

  • 21. [Mechanism of Cr(VI) biosorption by flocculating yeast].
    Chen L; Wang Z; Ge X; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2011 Jan; 27(1):52-9. PubMed ID: 21553490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sorption of Cr(VI) and Cu(II) in aqueous solution by ethylenediamine modified rice hull.
    Tang PL; Lee CK; Low KS; Zainal Z
    Environ Technol; 2003 Oct; 24(10):1243-51. PubMed ID: 14669804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent.
    Chandanshive VV; Rane NR; Tamboli AS; Gholave AR; Khandare RV; Govindwar SP
    J Hazard Mater; 2017 Sep; 338():47-56. PubMed ID: 28531658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of Cr(VI) by magnetite nanoparticle.
    Hu J; Lo IM; Chen G
    Water Sci Technol; 2004; 50(12):139-46. PubMed ID: 15686014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hexavalent chromium removal by viable, granular anaerobic biomass.
    Massara H; Mulligan CN; Hadjinicolaou J
    Bioresour Technol; 2008 Dec; 99(18):8637-42. PubMed ID: 18550364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil.
    Anjana K; Kaushik A; Kiran B; Nisha R
    J Hazard Mater; 2007 Sep; 148(1-2):383-6. PubMed ID: 17403568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads.
    Li H; Li Z; Liu T; Xiao X; Peng Z; Deng L
    Bioresour Technol; 2008 Sep; 99(14):6271-9. PubMed ID: 18221868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosorption of chromium(VI) using a Sargassum sp. packed-bed column.
    Vieira MG; Oisiovici RM; Gimenes ML; Silva MG
    Bioresour Technol; 2008 May; 99(8):3094-9. PubMed ID: 17689245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cr(III) and Cr(VI) removal from aqueous solutions by cheaply available fruit waste and algal biomass.
    Pakshirajan K; Worku AN; Acheampong MA; Lubberding HJ; Lens PN
    Appl Biochem Biotechnol; 2013 Jun; 170(3):498-513. PubMed ID: 23553106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark.
    Fiol N; Escudero C; Villaescusa I
    Bioresour Technol; 2008 Jul; 99(11):5030-6. PubMed ID: 17945493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of chromium (VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent.
    Srivastava J; Chandra H; Tripathi K; Naraian R; Sahu RK
    J Basic Microbiol; 2008 Apr; 48(2):135-9. PubMed ID: 18383226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of plants on the reduction of hexavalent chromium in wetland sediments.
    Zazo JA; Paull JS; Jaffe PR
    Environ Pollut; 2008 Nov; 156(1):29-35. PubMed ID: 18299165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum.
    Pérez Silva RM; Abalos Rodríguez A; Gómez Montes De Oca JM; Cantero Moreno D
    Bioresour Technol; 2009 Feb; 100(4):1533-8. PubMed ID: 18951017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: study of cations release and biosorption mechanism.
    Yin H; He B; Peng H; Ye J; Yang F; Zhang N
    J Hazard Mater; 2008 Oct; 158(2-3):568-76. PubMed ID: 18346847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size.
    Wu N; Wei H; Zhang L
    Environ Sci Technol; 2012 Jan; 46(1):419-25. PubMed ID: 22129207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexavalent chromium sorption by biomass of chromium tolerant Pythium sp.
    Kavita B; Limbachia J; Keharia H
    J Basic Microbiol; 2011 Apr; 51(2):173-82. PubMed ID: 21298678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic evaluation of chromium(VI) sorption by water lettuce (Pistia).
    Chakraborty R; Karmakar S; Mukherjee S; Kumar S
    Water Sci Technol; 2014; 69(1):195-201. PubMed ID: 24434987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic effect of Trichoderma reesei cellulases on agricultural tea waste for adsorption of heavy metal Cr(VI).
    Ng IS; Wu X; Yang X; Xie Y; Lu Y; Chen C
    Bioresour Technol; 2013 Oct; 145():297-301. PubMed ID: 23419991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of anion species and concentration on the removal of Cr(VI) by a microalgal isolate, Chlorella miniata.
    Han X; Wong YS; Wong MH; Tam NF
    J Hazard Mater; 2008 Oct; 158(2-3):615-20. PubMed ID: 18367329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.
    Amuda OS; Adelowo FE; Ologunde MO
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):184-92. PubMed ID: 19022632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.