These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24485763)

  • 1. Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics.
    Frederick KK; Debelouchina GT; Kayatekin C; Dorminy T; Jacavone AC; Griffin RG; Lindquist S
    Chem Biol; 2014 Feb; 21(2):295-305. PubMed ID: 24485763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies.
    Ghosh R; Dong J; Wall J; Frederick KK
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29846554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.
    Langlois CR; Pei F; Sindi SS; Serio TR
    PLoS Genet; 2016 Nov; 12(11):e1006417. PubMed ID: 27814358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prion amyloid structure explains templating: how proteins can be genes.
    Wickner RB; Shewmaker F; Edskes H; Kryndushkin D; Nemecek J; McGlinchey R; Bateman D; Winchester CL
    FEMS Yeast Res; 2010 Dec; 10(8):980-91. PubMed ID: 20726897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Amyloid Polymorphism on Prion-Chaperone Interactions in Yeast.
    Killian AN; Miller SC; Hines JK
    Viruses; 2019 Apr; 11(4):. PubMed ID: 30995727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substoichiometric Hsp104 regulates the genesis and persistence of self-replicable amyloid seeds of Sup35 prion domain.
    Mahapatra S; Sarbahi A; Madhu P; Swasthi HM; Sharma A; Singh P; Mukhopadhyay S
    J Biol Chem; 2022 Aug; 298(8):102143. PubMed ID: 35714774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radically different amyloid conformations dictate the seeding specificity of a chimeric Sup35 prion.
    Foo CK; Ohhashi Y; Kelly MJ; Tanaka M; Weissman JS
    J Mol Biol; 2011 Apr; 408(1):1-8. PubMed ID: 21333653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for diversification of yeast prion strain conformation.
    Ohhashi Y; Yamaguchi Y; Kurahashi H; Kamatari YO; Sugiyama S; Uluca B; Piechatzek T; Komi Y; Shida T; Müller H; Hanashima S; Heise H; Kuwata K; Tanaka M
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2389-2394. PubMed ID: 29467288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of aromatic residues in amyloid cores: structural insights into prion fiber diversity.
    Reymer A; Frederick KK; Rocha S; Beke-Somfai T; Kitts CC; Lindquist S; Nordén B
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17158-63. PubMed ID: 25404291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation seed size determines amyloid clearance and establishes a barrier to prion appearance in yeast.
    Villali J; Dark J; Brechtel TM; Pei F; Sindi SS; Serio TR
    Nat Struct Mol Biol; 2020 Jun; 27(6):540-549. PubMed ID: 32367069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+].
    Tessier PM; Lindquist S
    Nat Struct Mol Biol; 2009 Jun; 16(6):598-605. PubMed ID: 19491937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.
    Afanasieva EG; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    J Biol Chem; 2011 May; 286(18):15773-80. PubMed ID: 21454674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast prions form infectious amyloid inclusion bodies in bacteria.
    Espargaró A; Villar-Piqué A; Sabaté R; Ventura S
    Microb Cell Fact; 2012 Jun; 11():89. PubMed ID: 22731490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation.
    Bondarev SA; Shchepachev VV; Kajava AV; Zhouravleva GA
    J Biol Chem; 2013 Oct; 288(40):28503-13. PubMed ID: 23965990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human J-protein DnaJB6b Cures a Subset of Saccharomyces cerevisiae Prions and Selectively Blocks Assembly of Structurally Related Amyloids.
    Reidy M; Sharma R; Roberts BL; Masison DC
    J Biol Chem; 2016 Feb; 291(8):4035-47. PubMed ID: 26702057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast Sup35 Prion Structure: Two Types, Four Parts, Many Variants.
    Dergalev AA; Alexandrov AI; Ivannikov RI; Ter-Avanesyan MD; Kushnirov VV
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31146333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational variations in an infectious protein determine prion strain differences.
    Tanaka M; Chien P; Naber N; Cooke R; Weissman JS
    Nature; 2004 Mar; 428(6980):323-8. PubMed ID: 15029196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].
    Yin W; He J; Yu Z; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner.
    Inoue Y; Kawai-Noma S; Koike-Takeshita A; Taguchi H; Yoshida M
    Genes Cells; 2011 May; 16(5):545-56. PubMed ID: 21453424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.