These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24485763)

  • 41. The yeast prion protein Ure2: insights into the mechanism of amyloid formation.
    Chen LJ; Sawyer EB; Perrett S
    Biochem Soc Trans; 2011 Oct; 39(5):1359-64. PubMed ID: 21936815
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions.
    Shorter J; Lindquist S
    EMBO J; 2008 Oct; 27(20):2712-24. PubMed ID: 18833196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hierarchical organization in the amyloid core of yeast prion protein Ure2.
    Ngo S; Gu L; Guo Z
    J Biol Chem; 2011 Aug; 286(34):29691-9. PubMed ID: 21730048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils.
    Kabani M; Melki R
    Biochem Biophys Res Commun; 2020 Aug; 529(3):533-539. PubMed ID: 32736670
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A mathematical model of the dynamics of prion aggregates with chaperone-mediated fragmentation.
    Davis JK; Sindi SS
    J Math Biol; 2016 May; 72(6):1555-78. PubMed ID: 26297259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of yeast prion aggregates with amyloid-staining compound in vivo.
    Kimura Y; Koitabashi S; Fujita T
    Cell Struct Funct; 2003 Jun; 28(3):187-93. PubMed ID: 12951439
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress.
    Chernova TA; Kiktev DA; Romanyuk AV; Shanks JR; Laur O; Ali M; Ghosh A; Kim D; Yang Z; Mang M; Chernoff YO; Wilkinson KD
    Cell Rep; 2017 Jan; 18(3):751-761. PubMed ID: 28099852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
    Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406566
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hsp104 drives "protein-only" positive selection of Sup35 prion strains encoding strong [PSI(+)].
    DeSantis ME; Shorter J
    Chem Biol; 2012 Nov; 19(11):1400-10. PubMed ID: 23177195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probing the role of structural features of mouse PrP in yeast by expression as Sup35-PrP fusions.
    Jossé L; Marchante R; Zenthon J; von der Haar T; Tuite MF
    Prion; 2012 Jul; 6(3):201-10. PubMed ID: 22449853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Michler's hydrol blue elucidates structural differences in prion strains.
    Xiao Y; Rocha S; Kitts CC; Reymer A; Beke-Somfai T; Frederick KK; Nordén B
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29677-29683. PubMed ID: 33168711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM.
    Suhre MH; Hess S; Golser AV; Scheibel T
    J Inorg Biochem; 2009 Dec; 103(12):1711-20. PubMed ID: 19853305
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The interaction of Hsp104 with yeast prion Sup35 as analyzed by fluorescence cross-correlation spectroscopy.
    Ohta S; Kawai-Noma S; Kitamura A; Pack CG; Kinjo M; Taguchi H
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):28-32. PubMed ID: 24216111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation.
    Aslam K; Tsai CJ; Hazbun TR
    Prion; 2016 Nov; 10(6):444-465. PubMed ID: 27690738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds.
    Park YN; Zhao X; Yim YI; Todor H; Ellerbrock R; Reidy M; Eisenberg E; Masison DC; Greene LE
    Eukaryot Cell; 2014 May; 13(5):635-47. PubMed ID: 24632242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions.
    Kimura Y; Koitabashi S; Kakizuka A; Fujita T
    Genes Cells; 2004 Aug; 9(8):685-96. PubMed ID: 15298677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short disordered protein segment regulates cross-species transmission of a yeast prion.
    Shida T; Kamatari YO; Yoda T; Yamaguchi Y; Feig M; Ohhashi Y; Sugita Y; Kuwata K; Tanaka M
    Nat Chem Biol; 2020 Jul; 16(7):756-765. PubMed ID: 32284601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Site-specific structural analysis of a yeast prion strain with species-specific seeding activity.
    Marcelino-Cruz AM; Bhattacharya M; Anselmo AC; Tessier PM
    Prion; 2011; 5(3):208-14. PubMed ID: 22048721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of chaperone effects on a yeast prion by cochaperone Sgt2.
    Kiktev DA; Patterson JC; Müller S; Bariar B; Pan T; Chernoff YO
    Mol Cell Biol; 2012 Dec; 32(24):4960-70. PubMed ID: 23045389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins.
    Halfmann R; Alberti S; Krishnan R; Lyle N; O'Donnell CW; King OD; Berger B; Pappu RV; Lindquist S
    Mol Cell; 2011 Jul; 43(1):72-84. PubMed ID: 21726811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.