These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24485893)

  • 41. Taurine release evoked by NMDA receptor activation is largely dependent on calcium mobilization from intracellular stores.
    Menéndez N; Solís JM; Herreras O; Galarreta M; Conejero C; Martín del Río R
    Eur J Neurosci; 1993 Oct; 5(10):1273-9. PubMed ID: 8275229
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential modulation of [3H]TCP binding to the NMDA receptor by L-glutamate and glycine.
    Bénavidès J; Rivy JP; Carter C; Scatton B
    Eur J Pharmacol; 1988 Apr; 149(1-2):67-72. PubMed ID: 2840302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional N-methyl-D-aspartate receptors in clonal rat phaeochromocytoma cells.
    Casado M; López-Guajardo A; Mellström B; Naranjo JR; Lerma J
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):391-404. PubMed ID: 8821138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GABAA and strychnine-sensitive glycine receptors modulate N-methyl-D-aspartate-evoked acetylcholine release from rat spinal motoneurons: a possible role in neuroprotection.
    Cervetto C; Taccola G
    Neuroscience; 2008 Jul; 154(4):1517-24. PubMed ID: 18554813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials.
    Lee MY; Lin YR; Tu YS; Tseng YJ; Chan MH; Chen HH
    J Biomed Sci; 2017 Feb; 24(1):18. PubMed ID: 28245819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of neuroprotective function of taurine.
    Wu JY; Wu H; Jin Y; Wei J; Sha D; Prentice H; Lee HH; Lin CH; Lee YH; Yang LL
    Adv Exp Med Biol; 2009; 643():169-79. PubMed ID: 19239147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of calcium channels by taurine acting via a metabotropic-like glycine receptor.
    Albiñana E; Sacristán S; Martín del Río R; Solís JM; Hernández-Guijo JM
    Cell Mol Neurobiol; 2010 Nov; 30(8):1225-33. PubMed ID: 21080059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Whole-brain irradiation differentially modifies neurotransmitters levels and receptors in the hypothalamus and the prefrontal cortex.
    Franco-Pérez J; Montes S; Sánchez-Hernández J; Ballesteros-Zebadúa P
    Radiat Oncol; 2020 Nov; 15(1):269. PubMed ID: 33228731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spermine inhibits [3H]glycine binding at the NMDA receptors from plexiform layers of chick retina.
    Calderón F; López-Colomé AM
    Neurochem Res; 1998 Nov; 23(11):1363-9. PubMed ID: 9814546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glycinergic systems in the brain stem of developing and adult mice: effects of taurine.
    Kontro P; Oja SS
    Int J Dev Neurosci; 1987; 5(5-6):461-70. PubMed ID: 2845721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Taurine regulation of voltage-gated channels in retinal neurons.
    Rowan MJ; Bulley S; Purpura LA; Ripps H; Shen W
    Adv Exp Med Biol; 2013; 775():85-99. PubMed ID: 23392926
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NMDA receptor clustering in rat prefrontal cortex revealed by in vitro calcium macroimaging.
    Takita M; Yokoi H; Mizuno T
    Neuroreport; 1997 Jan; 8(2):551-3. PubMed ID: 9080446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glutamate receptor-mediated taurine release from the hippocampus during oxidative stress.
    Tucker B; Olson JE
    J Biomed Sci; 2010 Aug; 17 Suppl 1(Suppl 1):S10. PubMed ID: 20804584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical evaluation of chemical selectivity of glutamate receptor ion channel proteins with a multi-channel sensor.
    Sugawara M; Hirano A; Rehák M; Nakanishi J; Kawai K; Sato H; Umezawa Y
    Biosens Bioelectron; 1997; 12(5):425-39. PubMed ID: 9228734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modification of the N-methyl-D-aspartate (NMDA) receptor in the brain of newborn piglets following hyperventilation induced ischemia.
    Graham EM; Apostolou M; Mishra OP; Delivoria-Papadopoulos M
    Neurosci Lett; 1996 Oct; 218(1):29-32. PubMed ID: 8939473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of Cl-, K+, and nonselective cation conductances by taurine in olfactory receptor neurons of the mudpuppy Necturus maculosus.
    Dubin AE; Dionne VE
    J Gen Physiol; 1993 Apr; 101(4):469-85. PubMed ID: 7685047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuropsychopharmacological actions of taurine.
    Banerjee SP; Ragnauth A; Chan CY; Agovic MS; Sostris V; Jashanmal I; Vidal L; Friedman E
    Adv Exp Med Biol; 2013; 775():3-18. PubMed ID: 23392920
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Taurine receptor: kinetic analysis and pharmacological studies.
    Wu JY; Tang XW; Tsai WH
    Adv Exp Med Biol; 1992; 315():263-8. PubMed ID: 1324594
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alterations of the cortical evoked potential by topical application of taurine.
    Rossi ST; Bernardi N
    Electroencephalogr Clin Neurophysiol; 1983 Jan; 55(1):102-4. PubMed ID: 6185293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats.
    Qian T; Chen R; Nakamura M; Furukawa T; Kumada T; Akita T; Kilb W; Luhmann HJ; Nakahara D; Fukuda A
    Front Cell Neurosci; 2014; 8():33. PubMed ID: 24574969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.