These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 2448601)

  • 21. Structure of the saxitoxin binding site at sodium channels in nerve membranes. Exchange of tritium from bound toxin molecules.
    Strichartz G
    Mol Pharmacol; 1982 Mar; 21(2):343-50. PubMed ID: 6285170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in the study of mechanism of action of marine neurotoxins.
    Narahashi T; Roy ML; Ginsburg KS
    Neurotoxicology; 1994; 15(3):545-54. PubMed ID: 7854588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two subtypes of sodium channel with tetrodotoxin sensitivity and insensitivity detected in denervated mammalian skeletal muscle.
    Rogart RB; Regan LJ
    Brain Res; 1985 Mar; 329(1-2):314-8. PubMed ID: 2579711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and mu-conotoxins.
    Moczydlowski E; Olivera BM; Gray WR; Strichartz GR
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5321-5. PubMed ID: 2425365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ethanol on voltage-sensitive Na-channels in cultured skeletal muscle: up-regulation as a result of chronic treatment.
    Brodie C; Sampson SR
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1195-201. PubMed ID: 2175797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-dependent activation in purified reconstituted sodium channels from rabbit T-tubular membranes.
    Furman RE; Tanaka JC; Mueller P; Barchi RL
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):488-92. PubMed ID: 2417245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Saxitoxin binding to sodium channels in head extracts from wild-type and tetrodotoxin-sensitive strains of Drosophila melanogaster.
    Gitschier J; Strichartz GR; Hall LM
    Biochim Biophys Acta; 1980 Jan; 595(2):291-303. PubMed ID: 6766315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle.
    Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F
    Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of toxin-resistant sodium channels produced by chemical modification in frog skeletal muscle.
    Spalding BC
    J Physiol; 1980 Aug; 305():485-500. PubMed ID: 6255148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium channels in vertebrate hearts. Three types of saxitoxin binding sites in heart.
    Tanaka JC; Doyle DD; Barr L
    Biochim Biophys Acta; 1984 Aug; 775(2):203-14. PubMed ID: 6087903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins.
    Moczydlowski E; Hall S; Garber SS; Strichartz GS; Miller C
    J Gen Physiol; 1984 Nov; 84(5):687-704. PubMed ID: 6096479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of [3H]batrachotoxinin A benzoate to specific sites on rat cardiac sodium channels.
    Sheldon RS; Cannon NJ; Duff HJ
    Mol Pharmacol; 1986 Dec; 30(6):617-23. PubMed ID: 2431264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in the properties of Na+ channels in muscle surface and T-tubular membranes revealed by tetrodotoxin derivatives.
    Jaimovich E; Chicheportiche R; Lombet A; Lazdunski M; Ildefonse M; Rougier O
    Pflugers Arch; 1983 Apr; 397(1):1-5. PubMed ID: 6306551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain.
    Talvenheimo JA; Tamkun MM; Catterall WA
    J Biol Chem; 1982 Oct; 257(20):11868-71. PubMed ID: 6288700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of sodium channels during differentiation of chick skeletal muscle in culture. I. Binding studies.
    Baumgold J; Parent JB; Spector I
    J Neurosci; 1983 May; 3(5):995-1003. PubMed ID: 6302235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle.
    Sherman SJ; Catterall WA
    J Gen Physiol; 1982 Nov; 80(5):753-68. PubMed ID: 6294222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Biochemical studies of potential-dependent sodium channels].
    Gimmel'reÄ­kh NG
    Ukr Biokhim Zh (1978); 1985; 57(1):89-105. PubMed ID: 2579493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of the mu-conotoxins by [3H]saxitoxin binding assays in neuronal and skeletal muscle sodium channel.
    Floresca CZ
    Toxicol Appl Pharmacol; 2003 Jul; 190(2):95-101. PubMed ID: 12878039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-sensitive sodium channels: an evolving molecular view.
    Barchi RL; Casadei JM; Gordon RD; Roberts RH
    Soc Gen Physiol Ser; 1987; 41():125-48. PubMed ID: 2436306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isochannels and blocking modes of voltage-dependent sodium channels.
    Moczydlowski E; Uehara A; Guo X; Heiny J
    Ann N Y Acad Sci; 1986; 479():269-92. PubMed ID: 2433996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.