BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24486467)

  • 1. A strategy to potentiate Cd phytoremediation by saltmarsh plants - autochthonous bioaugmentation.
    Nunes da Silva M; Mucha AP; Rocha AC; Teixeira C; Gomes CR; Almeida CM
    J Environ Manage; 2014 Feb; 134():136-44. PubMed ID: 24486467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation.
    Oliveira T; Mucha AP; Reis I; Rodrigues P; Gomes CR; Almeida CM
    Mar Pollut Bull; 2014 Nov; 88(1-2):231-8. PubMed ID: 25240741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation.
    Montenegro IP; Mucha AP; Reis I; Rodrigues P; Almeida CM
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19471-80. PubMed ID: 27381357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.
    Almeida CMR; Oliveira T; Reis I; Gomes CR; Mucha AP
    Mar Environ Res; 2017 Dec; 132():68-78. PubMed ID: 29122290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.
    Teixeira C; Almeida CM; Nunes da Silva M; Bordalo AA; Mucha AP
    Sci Total Environ; 2014 Sep; 493():757-65. PubMed ID: 25000571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis.
    Cicero-Fernández D; Peña-Fernández M; Expósito-Camargo JA; Antizar-Ladislao B
    N Biotechnol; 2017 Sep; 38(Pt B):56-64. PubMed ID: 27449529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments.
    Ribeiro H; Mucha AP; Almeida CM; Bordalo AA
    J Environ Manage; 2014 May; 137():10-5. PubMed ID: 24584003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.
    Cicero-Fernández D; Peña-Fernández M; Expósito-Camargo JA; Antizar-Ladislao B
    Int J Phytoremediation; 2016; 18(6):575-82. PubMed ID: 26375048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification.
    Almeida CM; Mucha AP; da Silva MN; Monteiro M; Salgado P; Necrasov T; Magalhães C
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10270-8. PubMed ID: 24792983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrocarbon degradation potential of salt marsh plant-microorganisms associations.
    Ribeiro H; Mucha AP; Almeida CM; Bordalo AA
    Biodegradation; 2011 Jul; 22(4):729-39. PubMed ID: 21188477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes.
    Fernandes JP; Almeida CMR; Andreotti F; Barros L; Almeida T; Mucha AP
    Sci Total Environ; 2017 Mar; 581-582():801-810. PubMed ID: 28069300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment.
    Almeida CM; Mucha AP; Vasconcelos MT
    Environ Pollut; 2006 Jul; 142(1):151-9. PubMed ID: 16278040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments.
    Sricoth T; Meeinkuirt W; Saengwilai P; Pichtel J; Taeprayoon P
    Environ Sci Pollut Res Int; 2018 May; 25(15):14964-14976. PubMed ID: 29550977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities.
    Santos MS; Pedro CA; Gonçalves SC; Ferreira SM
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15598-609. PubMed ID: 26013743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant response of Phragmites australis to Cu and Cd contamination.
    Rocha AC; Almeida CM; Basto MC; Vasconcelos MT
    Ecotoxicol Environ Saf; 2014 Nov; 109():152-60. PubMed ID: 25193786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Cadmium Scavenging Potential of Canna indica L.
    Solanki P; Narayan M; Rabha AK; Srivastava RK
    Bull Environ Contam Toxicol; 2018 Oct; 101(4):446-450. PubMed ID: 30116850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills.
    Nikolopoulou M; Pasadakis N; Kalogerakis N
    Mar Pollut Bull; 2013 Jul; 72(1):165-73. PubMed ID: 23660443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of different salt marsh plants on hydrocarbon degrading microorganisms abundance throughout a phenological cycle.
    Ribeiro H; Almeida CM; Mucha AP; Bordalo AA
    Int J Phytoremediation; 2013; 15(8):715-28. PubMed ID: 23819270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.
    Cui H; Fan Y; Yang J; Xu L; Zhou J; Zhu Z
    Chemosphere; 2016 Oct; 161():233-241. PubMed ID: 27434253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.