These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 24486712)
1. Neuroepigenetics of memory formation and impairment: the role of microRNAs. Saab BJ; Mansuy IM Neuropharmacology; 2014 May; 80():61-9. PubMed ID: 24486712 [TBL] [Abstract][Full Text] [Related]
3. MicroRNAs in learning, memory, and neurological diseases. Wang W; Kwon EJ; Tsai LH Learn Mem; 2012 Aug; 19(9):359-68. PubMed ID: 22904366 [TBL] [Abstract][Full Text] [Related]
4. MicroRNAs in neuronal development, function and dysfunction. Saba R; Schratt GM Brain Res; 2010 Jun; 1338():3-13. PubMed ID: 20380818 [TBL] [Abstract][Full Text] [Related]
5. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains. Satoh J J Pharmacol Sci; 2010; 114(3):269-75. PubMed ID: 20953120 [TBL] [Abstract][Full Text] [Related]
6. Epigenetic modifications in the nervous system and their impact upon cognitive impairments. Rudenko A; Tsai LH Neuropharmacology; 2014 May; 80():70-82. PubMed ID: 24495398 [TBL] [Abstract][Full Text] [Related]
7. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Karpova NN Neuropharmacology; 2014 Jan; 76 Pt C():709-18. PubMed ID: 23587647 [TBL] [Abstract][Full Text] [Related]
9. Role of Dicer and the miRNA system in neuronal plasticity and brain function. Fiorenza A; Barco A Neurobiol Learn Mem; 2016 Nov; 135():3-12. PubMed ID: 27163737 [TBL] [Abstract][Full Text] [Related]
10. DNA methylation impacts on learning and memory in aging. Liu L; van Groen T; Kadish I; Tollefsbol TO Neurobiol Aging; 2009 Apr; 30(4):549-60. PubMed ID: 17850924 [TBL] [Abstract][Full Text] [Related]
11. Epigenetics of memory and plasticity. Woldemichael BT; Bohacek J; Gapp K; Mansuy IM Prog Mol Biol Transl Sci; 2014; 122():305-40. PubMed ID: 24484706 [TBL] [Abstract][Full Text] [Related]
12. microRNAs in neurons: manifold regulatory roles at the synapse. Siegel G; Saba R; Schratt G Curr Opin Genet Dev; 2011 Aug; 21(4):491-7. PubMed ID: 21561760 [TBL] [Abstract][Full Text] [Related]
13. Protein serine/threonine phosphatases in neuronal plasticity and disorders of learning and memory. Mansuy IM; Shenolikar S Trends Neurosci; 2006 Dec; 29(12):679-86. PubMed ID: 17084465 [TBL] [Abstract][Full Text] [Related]
14. MicroRNAs in the hypothalamus. Meister B; Herzer S; Silahtaroglu A Neuroendocrinology; 2013; 98(4):243-53. PubMed ID: 24080764 [TBL] [Abstract][Full Text] [Related]
16. Targeting microRNAs in neurons: tools and perspectives. Ruberti F; Barbato C; Cogoni C Exp Neurol; 2012 Jun; 235(2):419-26. PubMed ID: 22085592 [TBL] [Abstract][Full Text] [Related]
17. Review: The role of microRNAs in kidney disease. Li JY; Yong TY; Michael MZ; Gleadle JM Nephrology (Carlton); 2010 Sep; 15(6):599-608. PubMed ID: 20883280 [TBL] [Abstract][Full Text] [Related]
18. Targeting MicroRNAs in Prevention and Treatment of Neurodegenerative Disorders. Gupta S; Verma S; Mantri S; Berman NE; Sandhir R Drug Dev Res; 2015 Nov; 76(7):397-418. PubMed ID: 26359796 [TBL] [Abstract][Full Text] [Related]
19. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Wei CW; Luo T; Zou SS; Wu AS Life Sci; 2017 Nov; 188():118-122. PubMed ID: 28866103 [TBL] [Abstract][Full Text] [Related]
20. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Kim J; Krichevsky A; Grad Y; Hayes GD; Kosik KS; Church GM; Ruvkun G Proc Natl Acad Sci U S A; 2004 Jan; 101(1):360-5. PubMed ID: 14691248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]