These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24486768)

  • 1. Cognitive and neural foundations of discrete sequence skill: a TMS study.
    Ruitenberg MF; Verwey WB; Schutter DJ; Abrahamse EL
    Neuropsychologia; 2014 Apr; 56():229-38. PubMed ID: 24486768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of action sequences and the role of the pre-SMA.
    Kennerley SW; Sakai K; Rushworth MF
    J Neurophysiol; 2004 Feb; 91(2):978-93. PubMed ID: 14573560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial magnetic stimulation of the primary motor cortex modulates response interference in a flanker task.
    Soto D; Montoro PR; Humphreys GW
    Neurosci Lett; 2009 Feb; 451(3):261-5. PubMed ID: 19146925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of the SMA in the discrete sequence production task: a TMS study. Transcranial Magnetic Stimulation.
    Verwey WB; Lammens R; van Honk J
    Neuropsychologia; 2002; 40(8):1268-76. PubMed ID: 11931929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theta-burst transcranial magnetic stimulation over the supplementary motor area decreases variability of temporal estimates.
    Dusek P; Jech R; Havrankova P; Vymazal J; Wackermann J
    Neuro Endocrinol Lett; 2011; 32(4):481-6. PubMed ID: 21876488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.
    Nowak DA; Grefkes C; Dafotakis M; Eickhoff S; Küst J; Karbe H; Fink GR
    Arch Neurol; 2008 Jun; 65(6):741-7. PubMed ID: 18541794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying the cortical processing for motor preparation by repetitive transcranial magnetic stimulation.
    Terao Y; Furubayashi T; Okabe S; Mochizuki H; Arai N; Kobayashi S; Ugawa Y
    J Cogn Neurosci; 2007 Sep; 19(9):1556-73. PubMed ID: 17714016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex.
    Antal A; Terney D; Poreisz C; Paulus W
    Eur J Neurosci; 2007 Nov; 26(9):2687-91. PubMed ID: 17970738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions from the left PMd and the SMA during sequence retrieval as determined by depth of training.
    Wymbs NF; Grafton ST
    Exp Brain Res; 2013 Jan; 224(1):49-58. PubMed ID: 23283418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action verbs and the primary motor cortex: a comparative TMS study of silent reading, frequency judgments, and motor imagery.
    Tomasino B; Fink GR; Sparing R; Dafotakis M; Weiss PH
    Neuropsychologia; 2008; 46(7):1915-26. PubMed ID: 18328510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network dynamics mediating ipsilateral motor cortex activity during unimanual actions.
    Verstynen T; Ivry RB
    J Cogn Neurosci; 2011 Sep; 23(9):2468-80. PubMed ID: 21268666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory control and the frontal eye fields.
    Muggleton NG; Chen CY; Tzeng OJ; Hung DL; Juan CH
    J Cogn Neurosci; 2010 Dec; 22(12):2804-12. PubMed ID: 20044887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human supplementary motor area contribution to predictive motor planning.
    Makoshi Z; Kroliczak G; van Donkelaar P
    J Mot Behav; 2011; 43(4):303-9. PubMed ID: 21732868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the anterior intraparietal area and the dorsal premotor cortex interfere with arbitrary visuo-motor mapping.
    Taubert M; Dafotakis M; Sparing R; Eickhoff S; Leuchte S; Fink GR; Nowak DA
    Clin Neurophysiol; 2010 Mar; 121(3):408-13. PubMed ID: 20004613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1-Hz repetitive TMS over ipsilateral motor cortex influences the performance of sequential finger movements of different complexity.
    Avanzino L; Bove M; Trompetto C; Tacchino A; Ogliastro C; Abbruzzese G
    Eur J Neurosci; 2008 Mar; 27(5):1285-91. PubMed ID: 18312586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention to movement modulates activity in sensori-motor areas, including primary motor cortex.
    Johansen-Berg H; Matthews PM
    Exp Brain Res; 2002 Jan; 142(1):13-24. PubMed ID: 11797080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers.
    van den Berg FE; Swinnen SP; Wenderoth N
    J Cogn Neurosci; 2011 Nov; 23(11):3456-69. PubMed ID: 21452954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task.
    Watanabe T; Hanajima R; Shirota Y; Tsutsumi R; Shimizu T; Hayashi T; Terao Y; Ugawa Y; Katsura M; Kunimatsu A; Ohtomo K; Hirose S; Miyashita Y; Konishi S
    J Neurosci; 2015 Mar; 35(12):4813-23. PubMed ID: 25810512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: a perturbational approach by rTMS.
    Giovannelli F; Innocenti I; Rossi S; Borgheresi A; Ragazzoni A; Zaccara G; Viggiano MP; Cincotta M
    Cereb Cortex; 2014 Apr; 24(4):1009-16. PubMed ID: 23236203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.