These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24486796)

  • 1. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway.
    Świzdor A; Panek A; Milecka-Tronina N
    Steroids; 2014 Apr; 82():44-52. PubMed ID: 24486796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Baeyer-Villiger oxidation of steroidal ketones using Beauveria bassiana: Presence of an 11α-hydroxyl group essential to generation of D-homo lactones.
    Swizdor A; Kołek T; Panek A; Białońska A
    Biochim Biophys Acta; 2011 Apr; 1811(4):253-62. PubMed ID: 21277994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New 6,19-oxidoandrostan derivatives obtained by biotransformation in environmental filamentous fungi cultures.
    Kozłowska E; Matera A; Sycz J; Kancelista A; Kostrzewa-Susłow E; Janeczko T
    Microb Cell Fact; 2020 Feb; 19(1):37. PubMed ID: 32066453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of some 3alpha-substituted steroids by Aspergillus tamarii KITA reveals stereochemical restriction of steroid binding orientation in the minor hydroxylation pathway.
    Christy Hunter A; Khuenl-Brady H; Barrett P; Dodd HT; Dedi C
    J Steroid Biochem Mol Biol; 2010 Feb; 118(3):171-6. PubMed ID: 20026270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial transformation of androst-4-ene-3,17-dione by Beauveria bassiana.
    Xiong Z; Wei Q; Chen H; Chen S; Xu W; Qiu G; Liang S; Hu X
    Steroids; 2006 Nov; 71(11-12):979-83. PubMed ID: 16973198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baeyer-Villiger oxidation of some C(19) steroids by Penicillium lanosocoeruleum.
    Świzdor A
    Molecules; 2013 Nov; 18(11):13812-22. PubMed ID: 24213656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species.
    Kozłowska E; Urbaniak M; Hoc N; Grzeszczuk J; Dymarska M; Stępień Ł; Pląskowska E; Kostrzewa-Susłow E; Janeczko T
    Sci Rep; 2018 Sep; 8(1):13449. PubMed ID: 30194436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of a series of saturated isomeric steroidal diols by Aspergillus tamarii KITA reveals a precise stereochemical requirement for entrance into the lactonization pathway.
    Hunter AC; Collins C; Dodd HT; Dedi C; Koussoroplis SJ
    J Steroid Biochem Mol Biol; 2010 Nov; 122(5):352-8. PubMed ID: 20832471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxylation of DHEA and its analogues by Absidia coerulea AM93. Can an inducible microbial hydroxylase catalyze 7α- and 7β-hydroxylation of 5-ene and 5α-dihydro C19-steroids?
    Milecka-Tronina N; Kołek T; Swizdor A; Panek A
    Bioorg Med Chem; 2014 Jan; 22(2):883-91. PubMed ID: 24360825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformations of steroids by Beauveria bassiana.
    Huszcza E; Dmochowska-Gładysz J; Bartmańska A
    Z Naturforsch C J Biosci; 2005; 60(1-2):103-8. PubMed ID: 15787253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fate of pregnene-based steroids in the lactonization pathway of multifunctional strain Penicillium lanosocoeruleum.
    Świzdor A; Panek A; Ostrowska P
    Microb Cell Fact; 2018 Jun; 17(1):100. PubMed ID: 29940969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on Baeyer-Villiger oxidation of steroids: DHEA and pregnenolone D-lactonization pathways in Penicillium camemberti AM83.
    Kołek T; Szpineter A; Swizdor A
    Steroids; 2009 Oct; 74(10-11):859-62. PubMed ID: 19481558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of parthenin by Beauveria bassiana ATCC 7159.
    Abdel Halim OB; Maatooq GT; Marzouk AM
    Pharmazie; 2007 Mar; 62(3):226-30. PubMed ID: 17416201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5alpha-reduced C21 steroids are substrates for human cytochrome P450c17.
    Gupta MK; Guryev OL; Auchus RJ
    Arch Biochem Biophys; 2003 Oct; 418(2):151-60. PubMed ID: 14522586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of 5-ene steroids by the fungus Aspergillus tamarii KITA: mixed molecular fate in lactonization and hydroxylation pathways with identification of a putative 3beta-hydroxy-steroid dehydrogenase/Delta5-Delta4 isomerase pathway.
    Hunter AC; Coyle E; Morse F; Dedi C; Dodd HT; Koussoroplis SJ
    Biochim Biophys Acta; 2009 Feb; 1791(2):110-7. PubMed ID: 19136076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, function and tissue-specific gene expression of 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidogenic tissues.
    Labrie F; Simard J; Luu-The V; Bélanger A; Pelletier G
    J Steroid Biochem Mol Biol; 1992 Dec; 43(8):805-26. PubMed ID: 22217825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Modifications of Androstane and Androstene Steroids by
    Panek A; Łyczko P; Świzdor A
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32942593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and bioconversions of formestane.
    Martin GD; Narvaez J; Marti A
    J Nat Prod; 2013 Oct; 76(10):1966-9. PubMed ID: 24074257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial metabolism of 1-aminoanthracene by Beauveria bassiana.
    Zhan J; Gunatilaka AA
    Bioorg Med Chem; 2008 May; 16(9):5085-9. PubMed ID: 18378148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steroid modification by filamentous fungus Drechslera sp.: Focus on 7-hydroxylase and 17β-hydroxysteroid dehydrogenase activities.
    Kollerov V; Shutov A; Kazantsev A; Donova M
    Fungal Biol; 2022 Jan; 126(1):91-100. PubMed ID: 34930562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.