These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24486852)

  • 21. Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors.
    Lafer-Sousa R; Liu YO; Lafer-Sousa L; Wiest MC; Conway BR
    J Opt Soc Am A Opt Image Sci Vis; 2012 May; 29(5):657-70. PubMed ID: 22561924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical representation of color is binocular.
    Peirce JW; Solomon SG; Forte JD; Lennie P
    J Vis; 2008 Mar; 8(3):6.1-10. PubMed ID: 18484812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey.
    Tinsley CJ; Webb BS; Barraclough NE; Vincent CJ; Parker A; Derrington AM
    J Neurophysiol; 2003 Aug; 90(2):930-7. PubMed ID: 12711710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topography of contextual modulations mediated by short-range interactions in primary visual cortex.
    Das A; Gilbert CD
    Nature; 1999 Jun; 399(6737):655-61. PubMed ID: 10385116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LFP power spectra in V1 cortex: the graded effect of stimulus contrast.
    Henrie JA; Shapley R
    J Neurophysiol; 2005 Jul; 94(1):479-90. PubMed ID: 15703230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orientation and direction selectivity of neurons in V1 of alert monkeys: functional relationships and laminar distributions.
    Gur M; Kagan I; Snodderly DM
    Cereb Cortex; 2005 Aug; 15(8):1207-21. PubMed ID: 15616136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons.
    Saam M; Eckhorn R
    Biol Cybern; 2000 Jul; 83(1):L1-9. PubMed ID: 10933233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial and temporal scales of neuronal correlation in primary visual cortex.
    Smith MA; Kohn A
    J Neurosci; 2008 Nov; 28(48):12591-603. PubMed ID: 19036953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Color contrast in macaque V1.
    Conway BR; Hubel DH; Livingstone MS
    Cereb Cortex; 2002 Sep; 12(9):915-25. PubMed ID: 12183391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial patterns of spontaneous local field activity in the monkey visual cortex.
    Leopold DA; Logothetis NK
    Rev Neurosci; 2003; 14(1-2):195-205. PubMed ID: 12929926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laminar analysis of visually evoked activity in the primary visual cortex.
    Xing D; Yeh CI; Burns S; Shapley RM
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13871-6. PubMed ID: 22872866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different rules of spatial summation from beyond the receptive field for spike rates and oscillation amplitudes in cat visual cortex.
    Bauer R; Brosch M; Eckhorn R
    Brain Res; 1995 Jan; 669(2):291-7. PubMed ID: 7712185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal selectivity and local map structure in visual cortex.
    Nauhaus I; Benucci A; Carandini M; Ringach DL
    Neuron; 2008 Mar; 57(5):673-9. PubMed ID: 18341988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between spontaneous and evoked spike-time correlations in primate visual cortex.
    Jermakowicz WJ; Chen X; Khaytin I; Bonds AB; Casagrande VA
    J Neurophysiol; 2009 May; 101(5):2279-89. PubMed ID: 19211656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase-of-firing coding of natural visual stimuli in primary visual cortex.
    Montemurro MA; Rasch MJ; Murayama Y; Logothetis NK; Panzeri S
    Curr Biol; 2008 Mar; 18(5):375-80. PubMed ID: 18328702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ongoing Alpha Activity in V1 Regulates Visually Driven Spiking Responses.
    Dougherty K; Cox MA; Ninomiya T; Leopold DA; Maier A
    Cereb Cortex; 2017 Feb; 27(2):1113-1124. PubMed ID: 26656725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spike synchronization in cat primary visual cortex depends on similarity of surround-suppression magnitude.
    Naito T; Kasamatsu T; Sato H
    Eur J Neurosci; 2014 Mar; 39(6):934-945. PubMed ID: 24393437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical comparison of spike responses to natural stimuli in monkey area V1 with simulated responses of a detailed laminar network model for a patch of V1.
    Rasch MJ; Schuch K; Logothetis NK; Maass W
    J Neurophysiol; 2011 Feb; 105(2):757-78. PubMed ID: 21106898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers.
    Krüger J; Aiple F
    J Neurophysiol; 1988 Aug; 60(2):798-828. PubMed ID: 3171651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local field potentials are induced by visually evoked spiking activity in macaque cortical area MT.
    Esghaei M; Daliri MR; Treue S
    Sci Rep; 2017 Dec; 7(1):17110. PubMed ID: 29215034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.