These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 24486935)

  • 41. Fast pyrolysis char - Assessment of alternative uses within the bioliq® concept.
    Funke A; Niebel A; Richter D; Abbas MM; Müller AK; Radloff S; Paneru M; Maier J; Dahmen N; Sauer J
    Bioresour Technol; 2016 Jan; 200():905-13. PubMed ID: 26609947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Walnut shell oil-bath torrefaction coupled with fast pyrolysis: Effect of torrefaction heating modes.
    Dai A; Wu Q; Xu C; Xiong J; Fan L; Ke L; Zeng Y; Cobb K; Ruan R; Wang Y
    Bioresour Technol; 2024 Aug; 406():130984. PubMed ID: 38880267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.
    Paenpong C; Inthidech S; Pattiya A
    Bioresour Technol; 2013 Jul; 139():34-42. PubMed ID: 23644068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char.
    Yuan S; Dai ZH; Zhou ZJ; Chen XL; Yu GS; Wang FC
    Bioresour Technol; 2012 Apr; 109():188-97. PubMed ID: 22305541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Torrefaction performance of camellia shell under pyrolysis gas atmosphere.
    Xu X; Li Z; Jiang E
    Bioresour Technol; 2019 Jul; 284():178-187. PubMed ID: 30933826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw.
    Liang J; Lin Y; Wu S; Liu C; Lei M; Zeng C
    Bioresour Technol; 2015 Apr; 181():220-3. PubMed ID: 25647031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis.
    Correia R; Gonçalves M; Nobre C; Mendes B
    Bioresour Technol; 2017 Jan; 223():210-218. PubMed ID: 27792931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.
    Tinwala F; Mohanty P; Parmar S; Patel A; Pant KK
    Bioresour Technol; 2015; 188():258-64. PubMed ID: 25770670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grindability and combustion behavior of coal and torrefied biomass blends.
    Gil MV; García R; Pevida C; Rubiera F
    Bioresour Technol; 2015 Sep; 191():205-12. PubMed ID: 25997009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels.
    Yang Y; Brammer JG; Mahmood ASN; Hornung A
    Bioresour Technol; 2014 Oct; 169():794-799. PubMed ID: 25088312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A techno-economic analysis of using mobile distributed pyrolysis facilities to deliver a forest residue resource.
    Brown D; Rowe A; Wild P
    Bioresour Technol; 2013 Dec; 150():367-76. PubMed ID: 24185419
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characteristics of bio-oil and biochar from cotton stalk pyrolysis: Effects of torrefaction temperature and duration in an ammonia environment.
    Zhao A; Liu S; Yao J; Huang F; He Z; Liu J
    Bioresour Technol; 2022 Jan; 343():126145. PubMed ID: 34673191
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density.
    Lee JW; Kim YH; Lee SM; Lee HW
    Bioresour Technol; 2012 Jul; 116():471-6. PubMed ID: 22525262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues.
    Pattiya A; Suttibak S
    Bioresour Technol; 2012 Jul; 116():107-13. PubMed ID: 22609663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.
    Chen G; Liu C; Ma W; Zhang X; Li Y; Yan B; Zhou W
    Bioresour Technol; 2014 Aug; 166():500-7. PubMed ID: 24951937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres.
    Chen WH; Zhuang YQ; Liu SH; Juang TT; Tsai CM
    Bioresour Technol; 2016 Jan; 199():367-374. PubMed ID: 26346262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.
    Amutio M; Lopez G; Alvarez J; Olazar M; Bilbao J
    Bioresour Technol; 2015 Oct; 194():225-32. PubMed ID: 26203554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CO
    He Q; Guo Q; Ding L; Wei J; Yu G
    Bioresour Technol; 2019 Dec; 293():122087. PubMed ID: 31493729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Upgrading of bio-oil via solar pyrolysis of the biomass pretreated with aqueous phase bio-oil washing, solar drying, and solar torrefaction.
    Chen D; Cen K; Cao X; Zhang J; Chen F; Zhou J
    Bioresour Technol; 2020 Jun; 305():123130. PubMed ID: 32173260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of combined pretreatments on the pyrolysis of corn stalk.
    Zeng K; He X; Yang H; Wang X; Chen H
    Bioresour Technol; 2019 Jun; 281():309-317. PubMed ID: 30826517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.