These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24487009)

  • 1. Novel behavioral tasks to explore cerebellar temporal processing in milliseconds in rats.
    Yamaguchi K; Sakurai Y
    Behav Brain Res; 2014 Apr; 263():138-43. PubMed ID: 24487009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike-coding mechanisms of cerebellar temporal processing in classical conditioning and voluntary movements.
    Yamaguchi K; Sakurai Y
    Cerebellum; 2014 Oct; 13(5):651-8. PubMed ID: 24985239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency of network synchronization in the hippocampus marks learning.
    Ponomarenko AA; Li JS; Korotkova TM; Huston JP; Haas HL
    Eur J Neurosci; 2008 Jun; 27(11):3035-42. PubMed ID: 18588541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing behavior in streptozotocin-induced diabetic rats.
    Orduña V; Hong E; Bouzas A
    Behav Brain Res; 2011 Oct; 224(1):189-94. PubMed ID: 21683739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement schedules differentially affect learning in neuronal operant conditioning in rats.
    Song K; Takahashi S; Sakurai Y
    Neurosci Res; 2020 Apr; 153():62-67. PubMed ID: 31002837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The olivo-cerebellar system as a neural clock.
    Ashe J; Bushara K
    Adv Exp Med Biol; 2014; 829():155-65. PubMed ID: 25358710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rats can learn a temporal task in a single session.
    Reyes MB; de Miranda DH; Tunes GC; Cravo AM; Caetano MS
    Behav Processes; 2020 Jan; 170():103986. PubMed ID: 31783298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
    Wetmore DZ; Mukamel EA; Schnitzer MJ
    J Neurophysiol; 2008 Oct; 100(4):2328-47. PubMed ID: 17671105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke.
    Harrington DL; Lee RR; Boyd LA; Rapcsak SZ; Knight RT
    Brain; 2004 Mar; 127(Pt 3):561-74. PubMed ID: 14711883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subthalamic and striatal neurons concurrently process motor, limbic, and associative information in rats performing an operant task.
    Teagarden MA; Rebec GV
    J Neurophysiol; 2007 Mar; 97(3):2042-58. PubMed ID: 17182916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appetitively motivated instrumental learning in SynGAP heterozygous knockout mice.
    Muhia M; Feldon J; Knuesel I; Yee BK
    Behav Neurosci; 2009 Oct; 123(5):1114-28. PubMed ID: 19824778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive processing impairments in a supra-second temporal discrimination task in rats with cerebellar lesion.
    Callu D; El Massioui N; Dutrieux G; Brown BL; Doyere V
    Neurobiol Learn Mem; 2009 Mar; 91(3):250-9. PubMed ID: 19100851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson's disease.
    Jones CR; Malone TJ; Dirnberger G; Edwards M; Jahanshahi M
    Brain Cogn; 2008 Oct; 68(1):30-41. PubMed ID: 18378374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No alterations in the performance of two interval timing operant tasks after alpha-difluoromethylornithine (DFMO)-induced cerebellar stunting.
    Ferguson SA; Cada AM; Gray EP; Paule MG
    Behav Brain Res; 2001 Nov; 126(1-2):135-46. PubMed ID: 11704259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of paleocerebellar lesions on DRL performance in the albino rat.
    Kirk WT; Berntson GG; Hothersall D
    J Comp Physiol Psychol; 1982 Jun; 96(3):348-60. PubMed ID: 7096677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ERP study of temporal discrimination in rats.
    Onoda K; Sakata S
    Behav Processes; 2006 Feb; 71(2-3):235-40. PubMed ID: 16427215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients.
    Schwartze M; Keller PE; Kotz SA
    Behav Brain Res; 2016 Oct; 312():285-93. PubMed ID: 27345424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural representation of time.
    Ivry RB; Spencer RM
    Curr Opin Neurobiol; 2004 Apr; 14(2):225-32. PubMed ID: 15082329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurophysiology of timing in the hundreds of milliseconds: multiple layers of neuronal clocks in the medial premotor areas.
    Merchant H; Bartolo R; Pérez O; Méndez JC; Mendoza G; Gámez J; Yc K; Prado L
    Adv Exp Med Biol; 2014; 829():143-54. PubMed ID: 25358709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural mechanisms of rhythm perception: present findings and future directions.
    Leow LA; Grahn JA
    Adv Exp Med Biol; 2014; 829():325-38. PubMed ID: 25358718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.