BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 24487123)

  • 1. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute.
    Kim BS; Kang HJ; Yang SS; Lee J
    Biomed Mater; 2014 Apr; 9(2):025004. PubMed ID: 24487123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pentavalent dopant addition to polarization and bioactivity of hydroxyapatite.
    Dhal J; Bose S; Bandyopadhyay A
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):3061-8. PubMed ID: 23623133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substituted hydroxyapatite coatings of bone implants.
    Arcos D; Vallet-Regí M
    J Mater Chem B; 2020 Mar; 8(9):1781-1800. PubMed ID: 32065184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential Application of Protamine for Antimicrobial Biomaterials in Bone Tissue Engineering.
    Honda M; Matsumoto M; Aizawa M
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scrutinizing the effect of rGO-cuttlefish bone hydroxyapatite composite infused carrageenan membrane towards wound reconstruction.
    Sudhakar MP; Ali S; Chitra S
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130155. PubMed ID: 38365153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of synthetic hydroxyapatite versus Persian Gulf coral in an animal model of long bone defect reconstruction.
    Parizi AM; Oryan A; Shafiei-Sarvestani Z; Bigham-Sadegh A
    J Orthop Traumatol; 2013 Dec; 14(4):259-68. PubMed ID: 23989855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo behaviors of highly flexible paper consisting of ultralong hydroxyapatite nanowires.
    Kashiwada H; Shimizu Y; Sano Y; Yamauchi K; Guang H; Kumamoto H; Unuma H; Zhu YJ
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1611-1621. PubMed ID: 33665970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite synthesis and characterization from waste animal bones and natural sources for biomedical applications.
    Okpe PC; Folorunso O; Aigbodion VS; Obayi C
    J Biomed Mater Res B Appl Biomater; 2024 Jul; 112(7):e35440. PubMed ID: 38923882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical-physical behavior of Hydroxyapatite: A modeling approach.
    Guerfi Z; Kribaa OK; Djouama H
    J Mech Behav Biomed Mater; 2024 Feb; 150():106229. PubMed ID: 38000164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gallium-Doped Hydroxyapatite: Shape Transformation and Osteogenesis Activity.
    Shuai W; Zhou J; Xia C; Huang S; Yang J; Liu L; Yang H
    Molecules; 2023 Nov; 28(21):. PubMed ID: 37959798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report.
    Kattimani VS; Chakravarthi PS; Kanumuru NR; Subbarao VV; Sidharthan A; Kumar TS; Prasad LK
    J Int Oral Health; 2014 Jun; 6(3):15-9. PubMed ID: 25083027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping glycosaminoglycan-hydroxyapatite colloidal gels as potential tissue defect fillers.
    Dennis SC; Detamore MS; Kieweg SL; Berkland CJ
    Langmuir; 2014 Apr; 30(12):3528-37. PubMed ID: 24606047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of Portunus Pelagicus Hydroxyapatite Graft on Human Gingival Fibroblast Cell Culture.
    Kamadjaja MJK; Abraham JF; Laksono H
    Med Arch; 2019 Oct; 73(5):303-306. PubMed ID: 31819301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High affinity binding of an engineered, modular peptide to bone tissue.
    Brounts SH; Lee JS; Weinberg S; Lan Levengood SK; Smith EL; Murphy WL
    Mol Pharm; 2013 May; 10(5):2086-90. PubMed ID: 23506396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular Mechanisms Responsible for Success and Failure of Bone Substitute Materials.
    Rolvien T; Barbeck M; Wenisch S; Amling M; Krause M
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30249051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiological properties of nano-hydroxyapatite compared to natural equine hydroxyapatite quantified using dual-energy CT and high-field MR.
    Skierbiszewska K; Szałaj U; Turek B; Sych O; Jasiński T; Łojkowski W; Domino M
    Nanomedicine; 2024 Jun; 61():102765. PubMed ID: 38942131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel Chilean salmon fish backbone-based nanoHydroxyApatite functional biomaterial for potential use in bone tissue engineering.
    Muñoz F; Haidar ZS; Puigdollers A; Guerra I; Padilla MC; Ortega N; García MJ
    Front Med (Lausanne); 2024; 11():1330482. PubMed ID: 38774396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamellar Septa-like Structured Carbonate Apatite Scaffolds with Layer-by-Layer Fracture Behavior for Bone Regeneration.
    Taleb Alashkar AN; Hayashi K; Ishikawa K
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of Nano Hydroxyapatite and Mg-Whitlockite from Biowaste-Derived products via Continuous Flow Hydrothermal Synthesis: A Step towards Circular Economy.
    Nigar F; Johnston AL; Smith J; Oakley W; Islam MT; Felfel R; Grant D; Lester E; Ahmed I
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Biocompatibility and Osteogenic Activity of Marine-Plankton-Derived Whitlockite Bone Granules through Bone Morphogenetic Protein 2 Incorporation.
    Baek JW; Kim KS; Park H; Park NG; Kim BS
    Bioengineering (Basel); 2022 Aug; 9(8):. PubMed ID: 36004923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.