These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24487624)

  • 1. A high temperature capacitive pressure sensor based on alumina ceramic for in situ measurement at 600 °C.
    Tan Q; Li C; Xiong J; Jia P; Zhang W; Liu J; Xue C; Hong Y; Ren Z; Luo T
    Sensors (Basel); 2014 Jan; 14(2):2417-30. PubMed ID: 24487624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.
    Xiong J; Li C; Jia P; Chen X; Zhang W; Liu J; Xue C; Tan Q
    Sensors (Basel); 2015 Aug; 15(9):21844-56. PubMed ID: 26334279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Ceramic Diffusion Bonding Method for Passive LC High-Temperature Pressure Sensor.
    Li C; Sun B; Xue Y; Xiong J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30110982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase interrogation used for a wireless passive pressure sensor in an 800 °C high-temperature environment.
    Zhang H; Hong Y; Liang T; Zhang H; Tan Q; Xue C; Liu J; Zhang W; Xiong J
    Sensors (Basel); 2015 Jan; 15(2):2548-64. PubMed ID: 25690546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-optic Fabry-Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications.
    Liu J; Jia P; Zhang H; Tian X; Liang H; Hong Y; Liang T; Liu W; Xiong J
    Appl Opt; 2018 May; 57(15):4211-4215. PubMed ID: 29791395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Implantable Capacitive Pressure Sensor for Biomedical Applications.
    Roh JH; Shin KS; Song TH; Kim J; Lee DS
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Gold-Film Temperature Sensor for In Situ Temperature Measurement of a High-Precision MEMS Accelerometer.
    Song X; Liu H; Fang Y; Zhao C; Qu Z; Wang Q; Tu LC
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An LC Wireless Passive Pressure Sensor Based on Single-Crystal MgO MEMS Processing Technique for High Temperature Applications.
    Jia P; Liu J; Qian J; Ren Q; An G; Xiong J
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An annular mechanical temperature compensation structure for gas-sealed capacitive pressure sensor.
    Hao X; Jiang Y; Takao H; Maenaka K; Higuchi K
    Sensors (Basel); 2012; 12(6):8026-38. PubMed ID: 22969385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and Pressure Wireless Ceramic Sensor (Distance = 0.5 Meter) for Extreme Environment Applications.
    Daniel J; Nguyen S; Chowdhury MAR; Xu S; Xu C
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave Backscatter-Based Wireless Temperature Sensor Fabricated by an Alumina-Backed Au Slot Radiation Patch.
    Lu F; Wang H; Guo Y; Tan Q; Zhang W; Xiong J
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AlN-Based Ceramic Patch Antenna-Type Wireless Passive High-Temperature Sensor.
    Yan D; Yang Y; Hong Y; Liang T; Yao Z; Chen X; Xiong J
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless High Temperature Sensing Chipless Tag Based on a Diamond Ring Resonator.
    Wang B; Li Y; Gu T; Wang K
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Linearity Wireless Passive Temperature Sensor Based on Metamaterial Structure with Rotation-Insensitive Distance-Based Warning Ability.
    Wang C; Chen L; Tian B; Jiang Z
    Nanomaterials (Basel); 2023 Sep; 13(17):. PubMed ID: 37686990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.
    Tan Q; Kang H; Xiong J; Qin L; Zhang W; Li C; Ding L; Zhang X; Yang M
    Sensors (Basel); 2013 Aug; 13(8):9896-908. PubMed ID: 23917261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Research of Wireless Passive High-Temperature Sensor Based on SIW Resonance.
    Xu F; Su S; Zhang L; Ren T
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.
    Tan Q; Guo Y; Zhang L; Lu F; Dong H; Xiong J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformal Fabrication of Thick Film Platinum Strain Gauge Via Error Regulation Strategies for In Situ High-Temperature Strain Detection.
    Chen G; Zhao F; Zeng Y; Su Z; Xu L; Shao C; Wu C; He G; Chen Q; Zhao Y; Sun D; Hai Z
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):966-974. PubMed ID: 38109359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Sensitivity and Low-Hysteresis Porous MIMType Capacitive Humidity Sensor Using Functional Polymer Mixed with TiO2 Microparticles.
    Liu MQ; Wang C; Kim NY
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.