BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24487855)

  • 1. Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography.
    Huang BK; Choma MA
    Opt Lett; 2014 Feb; 39(3):521-4. PubMed ID: 24487855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic light scattering arising from flowing Brownian particles: analytical model in optical coherence tomography conditions.
    Popov I; Weatherbee AS; Vitkin IA
    J Biomed Opt; 2014 Dec; 19(12):127004. PubMed ID: 25517256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity.
    Wang Y; Wang R
    Opt Lett; 2010 Nov; 35(21):3538-40. PubMed ID: 21042342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional optical coherence tomography reveals melanin concentration-dependent scattering properties of retinal pigment epithelium.
    Meleppat RK; Zhang P; Ju MJ; Manna SK; Jian Y; Pugh EN; Zawadzki RJ
    J Biomed Opt; 2019 Jun; 24(6):1-10. PubMed ID: 31254332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting apoptosis using dynamic light scattering with optical coherence tomography.
    Farhat G; Mariampillai A; Yang VX; Czarnota GJ; Kolios MC
    J Biomed Opt; 2011 Jul; 16(7):070505. PubMed ID: 21806246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.
    Lee J; Radhakrishnan H; Wu W; Daneshmand A; Climov M; Ayata C; Boas DA
    J Cereb Blood Flow Metab; 2013 Jun; 33(6):819-25. PubMed ID: 23403378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic light scattering optical coherence tomography to probe motion of subcellular scatterers.
    Arezza NJJ; Razani M; Kolios MC
    J Biomed Opt; 2019 Feb; 24(2):1-7. PubMed ID: 30770677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows.
    Zhou KC; Huang BK; Gamm UA; Bhandari V; Khokha MK; Choma MA
    Biomed Opt Express; 2016 Apr; 7(4):1590-603. PubMed ID: 27375926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography.
    Pedersen CJ; Huang D; Shure MA; Rollins AM
    Opt Lett; 2007 Mar; 32(5):506-8. PubMed ID: 17392903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple and dependent scattering effects in Doppler optical coherence tomography.
    Kalkman J; Bykov AV; Faber DJ; van Leeuwen TG
    Opt Express; 2010 Feb; 18(4):3883-92. PubMed ID: 20389399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography.
    Huang BK; Gamm UA; Bhandari V; Khokha MK; Choma MA
    Biomed Opt Express; 2015 Sep; 6(9):3515-38. PubMed ID: 26417520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angle independent flow assessment with bidirectional Doppler optical coherence tomography.
    Blatter C; Grajciar B; Schmetterer L; Leitgeb RA
    Opt Lett; 2013 Nov; 38(21):4433-6. PubMed ID: 24177112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized transverse flow measurement with dynamic light scattering line-scan OCT.
    Han L; Tan B; Schmetterer L; Bizheva K
    Biomed Opt Express; 2023 Feb; 14(2):883-905. PubMed ID: 36874477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography.
    Weatherbee A; Popov I; Vitkin A
    J Biomed Opt; 2017 Aug; 22(8):1-10. PubMed ID: 28861954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering.
    Joo C; Evans CL; Stepinac T; Hasan T; de Boer JF
    Opt Express; 2010 Feb; 18(3):2858-71. PubMed ID: 20174115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography.
    Dai C; Liu X; Zhang HF; Puliafito CA; Jiao S
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):7998-8003. PubMed ID: 24222303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-referenced Doppler optical coherence tomography in scattering media.
    Pedersen CJ; Yazdanfar S; Westphal V; Rollins AM
    Opt Lett; 2005 Aug; 30(16):2125-7. PubMed ID: 16127931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels.
    Werkmeister RM; Dragostinoff N; Pircher M; Götzinger E; Hitzenberger CK; Leitgeb RA; Schmetterer L
    Opt Lett; 2008 Dec; 33(24):2967-9. PubMed ID: 19079508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved velocimetry in optical coherence tomography using Bayesian analysis.
    Zhou KC; Huang BK; Tagare H; Choma MA
    Biomed Opt Express; 2015 Dec; 6(12):4796-811. PubMed ID: 26713195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-based dynamic light scattering microscopy: theory and numerical analysis.
    Joo C; de Boer JF
    Appl Opt; 2013 Nov; 52(31):7618-28. PubMed ID: 24216666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.