These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24487874)

  • 41. Fourier-analytic technique for the separation of the signature of atmospheric CIO absorption from the solar background spectrum in the near ultraviolet.
    Burnett EB
    Appl Opt; 1989 Feb; 28(3):430-6. PubMed ID: 20548499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.
    Aleksandrov NL; Bodrov SB; Tsarev MV; Murzanev AA; Sergeev YA; Malkov YA; Stepanov AN
    Phys Rev E; 2016 Jul; 94(1-1):013204. PubMed ID: 27575227
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Absorption spectroscopy measurements in optically dense explosive fireballs using a modeless broadband dye laser.
    Glumac N
    Appl Spectrosc; 2009 Sep; 63(9):1075-80. PubMed ID: 19796492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High repetition rate laser produced soft x-ray source for ultrafast x-ray absorption near edge structure measurements.
    Fourmaux S; Lecherbourg L; Harmand M; Servol M; Kieffer JC
    Rev Sci Instrum; 2007 Nov; 78(11):113104. PubMed ID: 18052462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonlinear least squares analysis of atmospheric absorption spectra.
    Niple E
    Appl Opt; 1980 Oct; 19(20):3481-90. PubMed ID: 20234643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quasiunimodal tunable pulsed dye laser at 440 nm: theoretical development for using a quad prism beam expander and one or two gratings in a pulsed dye laser oscillator cavity.
    Dupre P
    Appl Opt; 1987 Mar; 26(5):860-71. PubMed ID: 20454235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.
    Lin B; Ismail S; Wallace Harrison F; Browell EV; Nehrir AR; Dobler J; Moore B; Refaat T; Kooi SA
    Appl Opt; 2013 Oct; 52(29):7062-77. PubMed ID: 24217721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy.
    Werle PW; Mazzinghi P; D'Amato F; De Rosa M; Maurer K; Slemr F
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1685-705. PubMed ID: 15248940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wind speed measurements of Doppler-shifted absorption lines using two-beam interferometry.
    Pierce RM; Roark SE
    Appl Opt; 2012 Apr; 51(12):1853-64. PubMed ID: 22534889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-resolved absorption spectroscopic characterization of ultrafast laser-produced plasmas under varying background pressures.
    Harilal SS; Kautz EJ; Phillips MC
    Phys Rev E; 2021 Jan; 103(1-1):013213. PubMed ID: 33601577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser absorption spectroscopy data processing method based on co-frequency and dual-wavelength and its application.
    Qi-Xing T; Yu-Jun Z; Dong C; Kai Z; Ying HE; Kun Y; Guo-Hua L; Yi-Bing LU; Bo-Qiang F; Dong-Qi YU
    Opt Express; 2018 Feb; 26(4):4459-4469. PubMed ID: 29475296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dose effect for South Serbians due to 238U in natural drinking water.
    Sahoo SK; Matsumoto M; Shiraishi K; Fujimoto K; Cuknic O; Zunic ZS
    Radiat Prot Dosimetry; 2007; 127(1-4):407-10. PubMed ID: 17567760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Using Fourier transform to analyse differential optical absorption spectrum].
    Liu QL; Wang LS; Huang XJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1076-9. PubMed ID: 18720805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast.
    El Mamoney MH; Khater AE
    J Environ Radioact; 2004; 73(2):151-68. PubMed ID: 15023445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Study on the emission spectra of aluminum plasma induced by high energy laser].
    Zhao SR; Chen JZ; Wei YH; Guo QL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Jun; 23(3):560-2. PubMed ID: 12953541
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laser-induced breakdown spectroscopy of silicate, vanadate and sulfide rocks.
    Vadillo JM; Laserna JJ
    Talanta; 1996 Jul; 43(7):1149-54. PubMed ID: 18966593
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring.
    Edner H; Ragnarson P; Spännare S; Svanberg S
    Appl Opt; 1993 Jan; 32(3):327-33. PubMed ID: 20802694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.
    Ghysels M; Durry G; Amarouche N
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():55-61. PubMed ID: 23416909
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of spectral resolution on the measurement of monoaromatic hydrocarbons by DOAS.
    Peng F; Xie P; Zhang Y; Zhu Y; Si F; Liu W; Wang J
    J Environ Sci (China); 2008; 20(5):632-40. PubMed ID: 18575119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.