These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 24487877)

  • 1. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass.
    Chen F; Deng Z; Yang Q; Bian H; Du G; Si J; Hou X
    Opt Lett; 2014 Feb; 39(3):606-9. PubMed ID: 24487877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching.
    Zhang F; Wang C; Yin K; Dong XR; Song YX; Tian YX; Duan JA
    Sci Rep; 2018 Feb; 8(1):2419. PubMed ID: 29402995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ultraviolet-Lithography-Assisted Sintering Method for Glass Microlens Array Fabrication.
    Zuo F; Ma S; Zhao W; Yang C; Li Z; Zhang C; Bai J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Rapid Fabrication Method of Large-Area MLAs with Variable Curvature for Retroreflectors Based on Thermal Reflow.
    Yong Y; Chen S; Chen H; Ge H; Hao Z
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Deformation Behavior of Glass in High-temperature Molding for Massive Unit Microlens Arrays.
    Wang G; Zhou T; Sun X; Gao L; Yao X; Zhao B; Guo W
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):43038-43048. PubMed ID: 39082273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing.
    Liu C; Oriekhov T; Lee C; Harvey CM; Fokine M
    3D Print Addit Manuf; 2024 Apr; 11(2):460-466. PubMed ID: 38689924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond laser directed fabrication of optical diffusers.
    Alqurashi T; Penchev P; Yetisen AK; Sabouri A; Ameen RM; Dimov S; Butt H
    RSC Adv; 2017 Mar; 7(29):18019-18023. PubMed ID: 30174826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric microlens array formed on a discontinuous wetting surface using a self-assembly technique.
    Xu M; Bian Z; Chen Q; Wang H; Chen C; Lu H
    Appl Opt; 2024 Jun; 63(16):4380-4385. PubMed ID: 38856617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Shape Prediction Model of Microlens Fabricated via Diffuser-Assisted Photolithography.
    Kim HM; Shin YK; Seo MH
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-switching laterally virtual-moving microlens array for enhancing spatial resolution in light-field imaging system without degradation of angular sampling resolution.
    Park MK; Park H; Joo KI; Lee TH; Kwon KC; Erdenebat MU; Lim YT; Kim N; Kim HR
    Sci Rep; 2019 Aug; 9(1):11297. PubMed ID: 31383912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep focus light-field camera for handheld 3D intraoral scanning using crosstalk-free solid immersion microlens arrays.
    Kwon JM; Bae SI; Kim T; Kim JK; Jeong KH
    APL Bioeng; 2023 Sep; 7(3):036110. PubMed ID: 37649619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-Random Multimetallic Nanoparticle Arrays.
    Freire-Fernández F; Reese T; Rhee D; Guan J; Li R; Schaller RD; Schatz GC; Odom TW
    ACS Nano; 2023 Nov; 17(21):21905-21911. PubMed ID: 37870944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arrays of glass wedges for multi-dimensional optical diagnostics.
    Richardson DR
    Appl Opt; 2023 Oct; 62(30):8034-8041. PubMed ID: 38038098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Fabrication of Wavelength-Scale Micropores on Metal by Femtosecond MHz Burst Bessel Beam Ablation.
    Cheng Y; Lu Y; Yang Q; Zhong J; Xu M; Gou X; Kai L; Hou X; Chen F
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond Laser Fabrication of Submillimeter Microlens Arrays with Tunable Numerical Apertures.
    Yang T; Li M; Yang Q; Lu Y; Cheng Y; Zhang C; Du B; Hou X; Chen F
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Metal-Based Slippery Liquid-Infused Porous Surfaces (SLIPSs) with Effective Liquid Repellency Achieved with a Femtosecond Laser.
    Fang Z; Cheng Y; Yang Q; Lu Y; Zhang C; Li M; Du B; Hou X; Chen F
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization.
    Zhang F; Yang Q; Bian H; Wang S; Li M; Hou X; Chen F
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications.
    Liu H; Lin W; Hong M
    Light Sci Appl; 2021 Aug; 10(1):162. PubMed ID: 34354041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Manufacturing of Glass Microstructures Using Femtosecond Laser.
    Butkutė A; Jonušauskas L
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New design model for high efficiency cylindrical diffractive microlenses.
    Li Y; Zhao H; Feng SF; Ye JS; Wang XK; Sun WF; Han P; Zhang Y
    Sci Rep; 2017 Nov; 7(1):16334. PubMed ID: 29180786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.