These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 24487891)
1. Angular distribution of random laser emission. Tenopala-Carmona F; García-Segundo C; Cuando-Espitia N; Hernández-Cordero J Opt Lett; 2014 Feb; 39(3):655-8. PubMed ID: 24487891 [TBL] [Abstract][Full Text] [Related]
2. Random laser emission from whole blood as the active medium. Mendicuti E; Käferlein O; García-Segundo C Opt Lett; 2021 Jan; 46(2):274-277. PubMed ID: 33449006 [TBL] [Abstract][Full Text] [Related]
3. Anisotropic behavior of random lasing in a highly concentrated dye solution. Bavali A; Rahmatpanahi A; Niknam Z Opt Express; 2022 Apr; 30(9):15685-15696. PubMed ID: 35473283 [TBL] [Abstract][Full Text] [Related]
4. Emission of Au nanoparticles with and without rhodamine 6G dye. Zhu G; Gavrilenko VI; Noginov MA J Chem Phys; 2007 Sep; 127(10):104503. PubMed ID: 17867757 [TBL] [Abstract][Full Text] [Related]
5. Random Lasing at Localization Transition in a Colloidal Suspension (TiO Jiménez-Villar E; da Silva IF; Mestre V; Wetter NU; Lopez C; de Oliveira PC; Faustino WM; de Sá GF ACS Omega; 2017 Jun; 2(6):2415-2421. PubMed ID: 31457590 [TBL] [Abstract][Full Text] [Related]
6. Real time random laser properties of Rhodamine-doped di-ureasil hybrids. Pecoraro E; García-Revilla S; Ferreira RA; Balda R; Carlos LD; Fernández J Opt Express; 2010 Mar; 18(7):7470-8. PubMed ID: 20389769 [TBL] [Abstract][Full Text] [Related]
7. Signatures of periodicity and randomness in the angular emission profile of a 2-D on-average periodic optofluidic random laser. Sarkar A; Shivakiran Bhaktha BN Opt Lett; 2015 Nov; 40(21):4951-4. PubMed ID: 26512491 [TBL] [Abstract][Full Text] [Related]
8. Random fiber laser. de Matos CJ; de S Menezes L; Brito-Silva AM; Martinez Gámez MA; Gomes AS; de Araújo CB Phys Rev Lett; 2007 Oct; 99(15):153903. PubMed ID: 17995168 [TBL] [Abstract][Full Text] [Related]
11. Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation. Jimenez-Villar E; Mestre V; de Oliveira PC; de Sá GF Nanoscale; 2013 Dec; 5(24):12512-7. PubMed ID: 24170214 [TBL] [Abstract][Full Text] [Related]
12. Lasing in active, sub-mean-free path-sized systems with dense, random, weak scatterers. Prasad BR; Ramachandran H; Sood AK; Subramanian CK; Kumar N Appl Opt; 1997 Oct; 36(30):7718-24. PubMed ID: 18264291 [TBL] [Abstract][Full Text] [Related]
13. Conventional unidirectional laser action enhanced by dye confined in nanoparticle scatters. Enciso E; Costela A; Garcia-Moreno I; Martin V; Sastre R Langmuir; 2010 May; 26(9):6154-7. PubMed ID: 20387817 [TBL] [Abstract][Full Text] [Related]
14. Recent advance to 3 × 10(-5) rad near diffraction-limited beam divergence of dye laser with transverse-discharge flash-lamp pumping. Trusov KK Appl Opt; 1994 Feb; 33(6):949-53. PubMed ID: 20862095 [TBL] [Abstract][Full Text] [Related]
15. Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement. Dominguez CT; Lacroute Y; Chaumont D; Sacilotti M; de Araújo CB; Gomes AS Opt Express; 2012 Jul; 20(16):17380-5. PubMed ID: 23038290 [TBL] [Abstract][Full Text] [Related]
16. Effective random laser action in Rhodamine 6G solution with Al nanoparticles. Yang L; Feng G; Yi J; Yao K; Deng G; Zhou S Appl Opt; 2011 May; 50(13):1816-21. PubMed ID: 21532657 [TBL] [Abstract][Full Text] [Related]
17. Random lasing in ballistic and diffusiveregimes for macroporous silica-based systems with tunable scattering strength. Meng X; Fujita K; Murai S; Konishi J; Mano M; Tanaka K Opt Express; 2010 Jun; 18(12):12153-60. PubMed ID: 20588338 [TBL] [Abstract][Full Text] [Related]
18. Tunable superradiant emission from a planar dye laser. Burlamacchi P; Pratesi R; Vanni U Appl Opt; 1976 Nov; 15(11):2684-9. PubMed ID: 20165474 [TBL] [Abstract][Full Text] [Related]