BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24487959)

  • 1. Sustained active site rigidity during synthesis by human DNA polymerase μ.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nat Struct Mol Biol; 2014 Mar; 21(3):253-60. PubMed ID: 24487959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into the substrate specificity of DNA Polymerase mu.
    Moon AF; Garcia-Diaz M; Bebenek K; Davis BJ; Zhong X; Ramsden DA; Kunkel TA; Pedersen LC
    Nat Struct Mol Biol; 2007 Jan; 14(1):45-53. PubMed ID: 17159995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creative template-dependent synthesis by human polymerase mu.
    Moon AF; Gosavi RA; Kunkel TA; Pedersen LC; Bebenek K
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4530-6. PubMed ID: 26240373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-bridging is required for pol mu to efficiently promote repair of noncomplementary ends by nonhomologous end joining.
    Davis BJ; Havener JM; Ramsden DA
    Nucleic Acids Res; 2008 May; 36(9):3085-94. PubMed ID: 18397950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural evidence for an in
    Loc'h J; Gerodimos CA; Rosario S; Tekpinar M; Lieber MR; Delarue M
    J Biol Chem; 2019 Jul; 294(27):10579-10595. PubMed ID: 31138645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural snapshots of human DNA polymerase μ engaged on a DNA double-strand break.
    Kaminski AM; Pryor JM; Ramsden DA; Kunkel TA; Pedersen LC; Bebenek K
    Nat Commun; 2020 Sep; 11(1):4784. PubMed ID: 32963245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of polymerase mu's BRCT Domain reveals an element essential for its role in nonhomologous end joining.
    DeRose EF; Clarkson MW; Gilmore SA; Galban CJ; Tripathy A; Havener JM; Mueller GA; Ramsden DA; London RE; Lee AL
    Biochemistry; 2007 Oct; 46(43):12100-10. PubMed ID: 17915942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
    Jamsen JA; Beard WA; Pedersen LC; Shock DD; Moon AF; Krahn JM; Bebenek K; Kunkel TA; Wilson SH
    Nat Commun; 2017 Aug; 8(1):253. PubMed ID: 28811466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerase mu is a DNA-directed DNA/RNA polymerase.
    Nick McElhinny SA; Ramsden DA
    Mol Cell Biol; 2003 Apr; 23(7):2309-15. PubMed ID: 12640116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role for polymerase specialization in cellular nonhomologous end joining.
    Pryor JM; Waters CA; Aza A; Asagoshi K; Strom C; Mieczkowski PA; Blanco L; Ramsden DA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4537-45. PubMed ID: 26240371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Gate-keeper" residues and active-site rearrangements in DNA polymerase μ help discriminate non-cognate nucleotides.
    Li Y; Schlick T
    PLoS Comput Biol; 2013; 9(5):e1003074. PubMed ID: 23717197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining.
    Nick McElhinny SA; Havener JM; Garcia-Diaz M; Juárez R; Bebenek K; Kee BL; Blanco L; Kunkel TA; Ramsden DA
    Mol Cell; 2005 Aug; 19(3):357-66. PubMed ID: 16061182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited terminal transferase in human DNA polymerase mu defines the required balance between accuracy and efficiency in NHEJ.
    Andrade P; Martín MJ; Juárez R; López de Saro F; Blanco L
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16203-8. PubMed ID: 19805281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 20 years of DNA Polymerase μ, the polymerase that still surprises.
    Ghosh D; Raghavan SC
    FEBS J; 2021 Dec; 288(24):7230-7242. PubMed ID: 33786971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymerase μ is a global player in the repair of non-homologous end-joining substrates.
    Chayot R; Montagne B; Ricchetti M
    DNA Repair (Amst); 2012 Jan; 11(1):22-34. PubMed ID: 22071146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase mu: An inflexible scaffold for substrate flexibility.
    Kaminski AM; Bebenek K; Pedersen LC; Kunkel TA
    DNA Repair (Amst); 2020 Sep; 93():102932. PubMed ID: 33087269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected behavior of DNA polymerase Mu opposite template 8-oxo-7,8-dihydro-2'-guanosine.
    Kaminski AM; Chiruvella KK; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2019 Sep; 47(17):9410-9422. PubMed ID: 31435651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair.
    Jamsen JA; Sassa A; Perera L; Shock DD; Beard WA; Wilson SH
    Nat Commun; 2021 Aug; 12(1):5055. PubMed ID: 34417448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.