BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24487976)

  • 1. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro.
    Kegler K; Imbschweiler I; Ulrich R; Kovermann P; Fahlke C; Deschl U; Kalkuhl A; Baumgärnter W; Wewetzer K
    J Neural Transm (Vienna); 2014 Jun; 121(6):569-81. PubMed ID: 24487976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-gated potassium currents in myelinating Schwann cells in the mouse.
    Konishi T
    J Physiol; 1990 Dec; 431():123-39. PubMed ID: 2100304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfection of adult canine Schwann cells and olfactory ensheathing cells at early and late passage with human TERT differentially affects growth factor responsiveness and in vitro growth.
    Techangamsuwan S; Kreutzer R; Kreutzer M; Imbschweiler I; Rohn K; Wewetzer K; Baumgärtner W
    J Neurosci Methods; 2009 Jan; 176(2):112-20. PubMed ID: 18822316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed rectifier K currents in NF1 Schwann cells. Pharmacological block inhibits proliferation.
    Fieber LA; González DM; Wallace MR; Muir D
    Neurobiol Dis; 2003 Jul; 13(2):136-46. PubMed ID: 12828937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteromultimeric delayed-rectifier K+ channels in schwann cells: developmental expression and role in cell proliferation.
    Sobko A; Peretz A; Shirihai O; Etkin S; Cherepanova V; Dagan D; Attali B
    J Neurosci; 1998 Dec; 18(24):10398-408. PubMed ID: 9852577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent calcium and potassium channels in Schwann cells cultured from dorsal root ganglia of the mouse.
    Amédée T; Ellie E; Dupouy B; Vincent JD
    J Physiol; 1991 Sep; 441():35-56. PubMed ID: 1667796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UDP-glucose enhances outward K(+) currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors.
    Coppi E; Maraula G; Fumagalli M; Failli P; Cellai L; Bonfanti E; Mazzoni L; Coppini R; Abbracchio MP; Pedata F; Pugliese AM
    Glia; 2013 Jul; 61(7):1155-71. PubMed ID: 23640798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent regulation of inwardly rectifying potassium currents in non-myelinating Schwann cells in mice.
    Konishi T
    J Physiol; 1994 Jan; 474(2):193-202. PubMed ID: 8006809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-dependent potassium channels in cultured mammalian Schwann cells.
    Konishi T
    Brain Res; 1989 Oct; 499(2):273-80. PubMed ID: 2804679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitogenic factors regulate ion channels in Schwann cells cultured from newborn rat sciatic nerve.
    Wilson GF; Chiu SY
    J Physiol; 1993 Oct; 470():501-20. PubMed ID: 7508507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium channel-dependent changes in the volume of developing mouse Schwann cells.
    Konishi T
    Brain Res; 1991 Nov; 565(1):57-66. PubMed ID: 1773357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of specific ion channel blockers on cultured Schwann cell proliferation.
    Pappas CA; Ritchie JM
    Glia; 1998 Feb; 22(2):113-20. PubMed ID: 9537831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous Kv channels in human embryonic kidney (HEK-293) cells.
    Jiang B; Sun X; Cao K; Wang R
    Mol Cell Biochem; 2002 Sep; 238(1-2):69-79. PubMed ID: 12349911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic currents in normal and neurofibromatosis type 1-affected human Schwann cells: induction of tumor cell K current in normal Schwann cells by cyclic AMP.
    Fieber LA
    J Neurosci Res; 1998 Nov; 54(4):495-506. PubMed ID: 9822160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine kinases modulate K+ channel gating in mouse Schwann cells.
    Peretz A; Sobko A; Attali B
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):373-84. PubMed ID: 10457056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent potassium channels in mouse Schwann cells.
    Konishi T
    J Physiol; 1989 Apr; 411():115-30. PubMed ID: 2559192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex expression and localization of inactivating Kv channels in cultured hippocampal astrocytes.
    Bekar LK; Loewen ME; Cao K; Sun X; Leis J; Wang R; Forsyth GW; Walz W
    J Neurophysiol; 2005 Mar; 93(3):1699-709. PubMed ID: 15738276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation.
    Fraser SP; Grimes JA; Diss JK; Stewart D; Dolly JO; Djamgoz MB
    Pflugers Arch; 2003 Aug; 446(5):559-71. PubMed ID: 12838421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent ionic channels in differentiating neural precursor cells collected from adult mouse brains six hours post-mortem.
    Bellardita C; Bolzoni F; Sorosina M; Marfia G; Carelli S; Gorio A; Formenti A
    J Neurosci Res; 2012 Apr; 90(4):751-8. PubMed ID: 22183987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells.
    Müller T; Fritschy JM; Grosche J; Pratt GD; Möhler H; Kettenmann H
    J Neurosci; 1994 May; 14(5 Pt 1):2503-14. PubMed ID: 8182424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.