These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24488244)

  • 1. [Growth rate of the axillary buds and variation of the type of correlation between the cotyledon and its axillary bud in Bidens pilosus L].
    Desbiez MO
    Planta; 1971 Dec; 100(4):325-30. PubMed ID: 24488244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Action of the cotyledon of Bidens pilosus L. var. radiatus on its axillary bud: case of inhibition and a case of stimulation; determination of auxin].
    CHAMPAGNAT P
    C R Seances Soc Biol Fil; 1951 Sep; 145(17-18):1371-3. PubMed ID: 14905749
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of a symmetry-breaking process in the course of the morphogenesis of plantlets of Bidens pilosa L.
    Desbiez MO; Tort M; Thellier M
    Planta; 1991 Jun; 184(3):397-402. PubMed ID: 24194158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of the terminal bud in the action exercised by the cotyledon of Bidens pilosus L. var. radiatus on its axillary bud].
    CHAMPAGNAT P
    C R Seances Soc Biol Fil; 1951 Sep; 145(17-18):1374-6. PubMed ID: 14905750
    [No Abstract]   [Full Text] [Related]  

  • 5. Hypocotyl Growth and Peroxidases of Bidens pilosus: EFFECT OF COTYLEDONARY PRICKINGS AND LITHIUM PRETREATMENT.
    Desbiez MO; Boyer N
    Plant Physiol; 1981 Jul; 68(1):41-3. PubMed ID: 16661885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Florigen is involved in axillary bud development at multiple stages in Arabidopsis.
    Niwa M; Endo M; Araki T
    Plant Signal Behav; 2013 Nov; 8(11):e27167. PubMed ID: 24305631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia Cadamba).
    Huang H; Wei Y; Zhai Y; Ouyang K; Chen X; Bai L
    Sci Rep; 2020 Mar; 10(1):4558. PubMed ID: 32165694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model for storage and recall functions in plants.
    Demongeot J; Thomas R; Thellier M
    C R Acad Sci III; 2000 Jan; 323(1):93-7. PubMed ID: 10742914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormones and young leaves control development of cotyledonary buds in tomato seedlings.
    Aung LH
    Plant Physiol; 1978 Aug; 62(2):276-9. PubMed ID: 16660500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of indoleacetic Acid and abscisic Acid in the correlative control by fruits of axillary bud development and leaf senescence.
    Tamas IA; Engels CJ
    Plant Physiol; 1981 Aug; 68(2):476-81. PubMed ID: 16661940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative anatomical analysis of the cotyledonary region in three Mediterranean Basin Quercus (Fagaceae).
    Pascual G; Molinas M; Verdaguer D
    Am J Bot; 2002 Mar; 89(3):383-92. PubMed ID: 21665633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Storage and recall of environmental signals in a plant: modelling by use of a differential (continuous) formulation.
    Demongeot J; Thellier M; Thomas R
    C R Biol; 2006 Dec; 329(12):971-8. PubMed ID: 17126802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary transition from resprouter to seeder life history in two Erica (Ericaceae) species: insights from seedling axillary buds.
    Verdaguer D; Ojeda F
    Ann Bot; 2005 Mar; 95(4):593-9. PubMed ID: 15661748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of Benzyladenine and Gibberellin A(1) from Roots in Relation to the Dominance between the Axillary Buds of Pea (Pisum sativum L.) Cotyledons.
    Procházka S; Jacobs WP
    Plant Physiol; 1984 Sep; 76(1):224-7. PubMed ID: 16663803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and physiological analyses of rice seedlings under different nitrogen supplies provide insight into the regulation involved in axillary bud outgrowth.
    Wang R; Qian J; Fang Z; Tang J
    BMC Plant Biol; 2020 May; 20(1):197. PubMed ID: 32380960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on calcium sensitive period during floral differentiation of cucumber cotyledonary node cultures in vitro].
    Wang LL; Pang JL; Hu JQ; Zhang YY; Liang HM
    Shi Yan Sheng Wu Xue Bao; 2002 Jun; 35(2):147-50. PubMed ID: 15344334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Fruits on Dormancy and Abscisic Acid Concentration in the Axillary Buds of Phaseolus vulgaris L.
    Tamas IA; Ozbun JL; Wallace DH
    Plant Physiol; 1979 Oct; 64(4):615-9. PubMed ID: 16661019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Efficient plant regeneration in vitro in Pinus massoniana L].
    Zhang Y; Wei ZM; Xi ML; Shi JS
    Fen Zi Xi Bao Sheng Wu Xue Bao; 2006 Jun; 39(3):271-6. PubMed ID: 16944603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of relative hormone concentration on auxin-gibberellin interaction in correlative inhibition of axillary buds.
    Phillips ID
    Planta; 1971 Mar; 96(1):27-34. PubMed ID: 24493039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice.
    Luo L; Takahashi M; Kameoka H; Qin R; Shiga T; Kanno Y; Seo M; Ito M; Xu G; Kyozuka J
    Plant J; 2019 Mar; 97(6):1006-1021. PubMed ID: 30740793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.