BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24488317)

  • 1. Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly.
    Romero D; Vlamakis H; Losick R; Kolter R
    J Bacteriol; 2014 Apr; 196(8):1505-13. PubMed ID: 24488317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis.
    Driks A
    Mol Microbiol; 2011 Jun; 80(5):1133-6. PubMed ID: 21488983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The majority of the matrix protein TapA is dispensable for Bacillus subtilis colony biofilm architecture.
    Earl C; Arnaouteli S; Bamford NC; Porter M; Sukhodub T; MacPhee CE; Stanley-Wall NR
    Mol Microbiol; 2020 Dec; 114(6):920-933. PubMed ID: 32491277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms.
    Romero D; Vlamakis H; Losick R; Kolter R
    Mol Microbiol; 2011 Jun; 80(5):1155-68. PubMed ID: 21477127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TapA acts as specific chaperone in TasA filament formation by strand complementation.
    Roske Y; Lindemann F; Diehl A; Cremer N; Higman VA; Schlegel B; Leidert M; Driller K; Turgay K; Schmieder P; Heinemann U; Oschkinat H
    Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2217070120. PubMed ID: 37068239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.
    Romero D; Aguilar C; Losick R; Kolter R
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):2230-4. PubMed ID: 20080671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Model Membranes Reshape Fibrillation of a Functional Amyloid Protein.
    Malishev R; Abbasi R; Jelinek R; Chai L
    Biochemistry; 2018 Sep; 57(35):5230-5238. PubMed ID: 29565118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.
    Lei Y; Oshima T; Ogasawara N; Ishikawa S
    J Bacteriol; 2013 Apr; 195(8):1697-705. PubMed ID: 23378512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of the N-terminal half of TasA during amyloid-like assembly and its contribution to Bacillus subtilis biofilm formation.
    Cámara-Almirón J; Domínguez-García L; El Mammeri N; Lends A; Habenstein B; de Vicente A; Loquet A; Romero D
    NPJ Biofilms Microbiomes; 2023 Sep; 9(1):68. PubMed ID: 37739955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis.
    Ostrowski A; Mehert A; Prescott A; Kiley TB; Stanley-Wall NR
    J Bacteriol; 2011 Sep; 193(18):4821-31. PubMed ID: 21742882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation for modeling the protein-protein interaction of TasA
    Verma N; Srivastava S; Malik R; Yadav JK; Goyal P; Pandey J
    J Mol Model; 2020 Aug; 26(9):226. PubMed ID: 32779018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms.
    Böhning J; Ghrayeb M; Pedebos C; Abbas DK; Khalid S; Chai L; Bharat TAM
    Nat Commun; 2022 Nov; 13(1):7082. PubMed ID: 36400765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bacterial Extracellular Matrix Protein TapA Is a Two-Domain Partially Disordered Protein.
    Abbasi R; Mousa R; Dekel N; Amartely H; Danieli T; Lebendiker M; Levi-Kalisman Y; Shalev DE; Metanis N; Chai L
    Chembiochem; 2019 Feb; 20(3):355-359. PubMed ID: 30371005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA.
    Erskine E; Morris RJ; Schor M; Earl C; Gillespie RMC; Bromley KM; Sukhodub T; Clark L; Fyfe PK; Serpell LC; Stanley-Wall NR; MacPhee CE
    Mol Microbiol; 2018 Dec; 110(6):897-913. PubMed ID: 29802781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Functional Amyloids in Multicellular Growth and Development of Gram-Positive Bacteria.
    Dragoš A; Kovács ÁT; Claessen D
    Biomolecules; 2017 Aug; 7(3):. PubMed ID: 28783117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms.
    Caro-Astorga J; Pérez-García A; de Vicente A; Romero D
    Front Microbiol; 2014; 5():745. PubMed ID: 25628606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm.
    Marlow VL; Porter M; Hobley L; Kiley TB; Swedlow JR; Davidson FA; Stanley-Wall NR
    J Bacteriol; 2014 Jan; 196(1):16-27. PubMed ID: 24123822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Inhibition of Bacterial Biofilm Through Interference of Protein-Protein Interaction of Master Regulator Proteins: a Proof of Concept Study with SinR- SinI Complex of Bacillus subtilis.
    Kantiwal U; Pandey J
    Appl Biochem Biotechnol; 2023 Mar; 195(3):1947-1967. PubMed ID: 36401726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis.
    Wu J; Li W; Zhao SG; Qian SH; Wang Z; Zhou MJ; Hu WS; Wang J; Hu LX; Liu Y; Xue ZL
    Microb Cell Fact; 2021 Jun; 20(1):113. PubMed ID: 34098969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular architecture of bacterial amyloids in
    El Mammeri N; Hierrezuelo J; Tolchard J; Cámara-Almirón J; Caro-Astorga J; Álvarez-Mena A; Dutour A; Berbon M; Shenoy J; Morvan E; Grélard A; Kauffmann B; Lecomte S; de Vicente A; Habenstein B; Romero D; Loquet A
    FASEB J; 2019 Nov; 33(11):12146-12163. PubMed ID: 31370706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.