These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 24488486)

  • 1. Status in calculating electronic excited states in transition metal oxides from first principles.
    Bendavid LI; Carter EA
    Top Curr Chem; 2014; 347():47-98. PubMed ID: 24488486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded correlated wavefunction schemes: theory and applications.
    Libisch F; Huang C; Carter EA
    Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.
    Ma Y; Rohlfing M; Molteni C
    J Chem Theory Comput; 2010 Jan; 6(1):257-65. PubMed ID: 26614336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark.
    Liao P; Carter EA
    Phys Chem Chem Phys; 2011 Sep; 13(33):15189-99. PubMed ID: 21761032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.
    Faber C; Boulanger P; Attaccalite C; Duchemin I; Blase X
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130271. PubMed ID: 24516185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited-state electronic structure of molecules using many-body Green's functions: Quasiparticles and electron-hole excitations with VOTCA-XTP.
    Tirimbò G; Sundaram V; Çaylak O; Scharpach W; Sijen J; Junghans C; Brown J; Ruiz FZ; Renaud N; Wehner J; Baumeier B
    J Chem Phys; 2020 Mar; 152(11):114103. PubMed ID: 32199411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules.
    Bruneval F; Hamed SM; Neaton JB
    J Chem Phys; 2015 Jun; 142(24):244101. PubMed ID: 26133404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Excitations in Push-Pull Oligomers and Their Complexes with Fullerene from Many-Body Green's Functions Theory with Polarizable Embedding.
    Baumeier B; Rohlfing M; Andrienko D
    J Chem Theory Comput; 2014 Aug; 10(8):3104-10. PubMed ID: 26588281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in correlated electronic structure methods for solids, surfaces, and nanostructures.
    Huang P; Carter EA
    Annu Rev Phys Chem; 2008; 59():261-90. PubMed ID: 18031211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic/inorganic hybrid materials: challenges for ab initio methodology.
    Draxl C; Nabok D; Hannewald K
    Acc Chem Res; 2014 Nov; 47(11):3225-32. PubMed ID: 25171272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Excitations of Polythiophene within Many-Body Perturbation Theory with and without the Tamm-Dancoff Approximation.
    Lettmann T; Rohlfing M
    J Chem Theory Comput; 2019 Aug; 15(8):4547-4554. PubMed ID: 31265277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark Many-Body GW and Bethe-Salpeter Calculations for Small Transition Metal Molecules.
    Körbel S; Boulanger P; Duchemin I; Blase X; Marques MA; Botti S
    J Chem Theory Comput; 2014 Sep; 10(9):3934-43. PubMed ID: 26588537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green's Functions Theory.
    Wehner J; Baumeier B
    J Chem Theory Comput; 2017 Apr; 13(4):1584-1594. PubMed ID: 28234472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory.
    Gulans A; Kontur S; Meisenbichler C; Nabok D; Pavone P; Rigamonti S; Sagmeister S; Werner U; Draxl C
    J Phys Condens Matter; 2014 Sep; 26(36):363202. PubMed ID: 25135665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP.
    Wehner J; Brombacher L; Brown J; Junghans C; Çaylak O; Khalak Y; Madhikar P; Tirimbò G; Baumeier B
    J Chem Theory Comput; 2018 Dec; 14(12):6253-6268. PubMed ID: 30404449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.