BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24488674)

  • 1. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.
    Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z
    ChemSusChem; 2014 Feb; 7(2):317. PubMed ID: 24488674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.
    Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z
    ChemSusChem; 2014 Feb; 7(2):435-41. PubMed ID: 24488677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.
    Xu J; Kan Y; Huang R; Zhang B; Wang B; Wu KH; Lin Y; Sun X; Li Q; Centi G; Su D
    ChemSusChem; 2016 May; 9(10):1085-9. PubMed ID: 27100272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal amplification by adsorption-induced catalytic reduction of dissolved oxygen on nitrogen-doped carbon nanotubes for electrochemiluminescent immunoassay.
    Deng S; Hou Z; Lei J; Lin D; Hu Z; Yan F; Ju H
    Chem Commun (Camb); 2011 Nov; 47(44):12107-9. PubMed ID: 22006261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO
    Roldán L; Marco Y; García-Bordejé E
    ChemSusChem; 2017 Mar; 10(6):1139-1144. PubMed ID: 27921378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water.
    Aoi S; Mase K; Ohkubo K; Fukuzumi S
    Chem Commun (Camb); 2015 Jun; 51(50):10226-8. PubMed ID: 26021853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of graphite- and pyridinelike nitrogen configurations in carbon nitride nanotubes: dependence on diameter and helicity.
    Yang SH; Shin WH; Kang JK
    Small; 2008 Apr; 4(4):437-41. PubMed ID: 18348228
    [No Abstract]   [Full Text] [Related]  

  • 8. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO
    Jhong HM; Tornow CE; Smid B; Gewirth AA; Lyth SM; Kenis PJ
    ChemSusChem; 2017 Mar; 10(6):1094-1099. PubMed ID: 27791338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections.
    Du AJ; Sun CH; Zhu ZH; Lu GQ; Rudolph V; Smith SC
    Nanotechnology; 2009 Sep; 20(37):375701. PubMed ID: 19706942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2.
    Sawant SY; Somani RS; Bajaj HC; Sharma SS
    J Hazard Mater; 2012 Aug; 227-228():317-26. PubMed ID: 22682801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes.
    Susi T; Kotakoski J; Arenal R; Kurasch S; Jiang H; Skakalova V; Stephan O; Krasheninnikov AV; Kauppinen EI; Kaiser U; Meyer JC
    ACS Nano; 2012 Oct; 6(10):8837-46. PubMed ID: 23009666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Pyridinic Nitrogen as Highly Active Metal-Free Coordination Sites at the Biotic-Abiotic Interface for Bio-Electrochemical CO
    Xia R; Cheng J; Chen Z; Zhang Z; Zhou X; Zhou J; Zhang M
    Small; 2024 May; 20(18):e2306331. PubMed ID: 38054812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature, controlled synthesis of carbon nanotubes.
    Dai L
    Small; 2005 Mar; 1(3):274-6. PubMed ID: 17193443
    [No Abstract]   [Full Text] [Related]  

  • 14. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction.
    Morris AJ; McGibbon RT; Bocarsly AB
    ChemSusChem; 2011 Feb; 4(2):191-6. PubMed ID: 21328550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient CO(2) capture by porous, nitrogen-doped carbonaceous adsorbents derived from task-specific ionic liquids.
    Zhu X; Hillesheim PC; Mahurin SM; Wang C; Tian C; Brown S; Luo H; Veith GM; Han KS; Hagaman EW; Liu H; Dai S
    ChemSusChem; 2012 Oct; 5(10):1912-7. PubMed ID: 22907832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction.
    Yu D; Zhang Q; Dai L
    J Am Chem Soc; 2010 Nov; 132(43):15127-9. PubMed ID: 20929222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent assembly of picket-fence porphyrins on nitrogen-doped carbon nanotubes for highly efficient catalysis and biosensing.
    Tu W; Lei J; Jian G; Hu Z; Ju H
    Chemistry; 2010 Apr; 16(13):4120-6. PubMed ID: 20162648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.
    Deng S; Jian G; Lei J; Hu Z; Ju H
    Biosens Bioelectron; 2009 Oct; 25(2):373-7. PubMed ID: 19683424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terpyridine complexes of first row transition metals and electrochemical reduction of CO₂ to CO.
    Elgrishi N; Chambers MB; Artero V; Fontecave M
    Phys Chem Chem Phys; 2014 Jul; 16(27):13635-44. PubMed ID: 24651983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.