These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24488677)
1. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen. Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z ChemSusChem; 2014 Feb; 7(2):435-41. PubMed ID: 24488677 [TBL] [Abstract][Full Text] [Related]
2. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen. Jiao Y; Zheng Y; Smith SC; Du A; Zhu Z ChemSusChem; 2014 Feb; 7(2):317. PubMed ID: 24488674 [TBL] [Abstract][Full Text] [Related]
3. The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections. Du AJ; Sun CH; Zhu ZH; Lu GQ; Rudolph V; Smith SC Nanotechnology; 2009 Sep; 20(37):375701. PubMed ID: 19706942 [TBL] [Abstract][Full Text] [Related]
4. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide. Xu J; Kan Y; Huang R; Zhang B; Wang B; Wu KH; Lin Y; Sun X; Li Q; Centi G; Su D ChemSusChem; 2016 May; 9(10):1085-9. PubMed ID: 27100272 [TBL] [Abstract][Full Text] [Related]
5. Layered Graphene-Hexagonal BN Nanocomposites: Experimentally Feasible Approach to Charge-Induced Switchable CO2 Capture. Tan X; Kou L; Smith SC ChemSusChem; 2015 Sep; 8(17):2987-93. PubMed ID: 26073178 [TBL] [Abstract][Full Text] [Related]
6. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. Aoi S; Mase K; Ohkubo K; Fukuzumi S Chem Commun (Camb); 2015 Jun; 51(50):10226-8. PubMed ID: 26021853 [TBL] [Abstract][Full Text] [Related]
7. Capture of CO2 from flue gas via multiwalled carbon nanotubes. Su F; Lu C; Cnen W; Bai H; Hwang JF Sci Total Environ; 2009 Apr; 407(8):3017-23. PubMed ID: 19201012 [TBL] [Abstract][Full Text] [Related]
8. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. Susi T; Kotakoski J; Arenal R; Kurasch S; Jiang H; Skakalova V; Stephan O; Krasheninnikov AV; Kauppinen EI; Kaiser U; Meyer JC ACS Nano; 2012 Oct; 6(10):8837-46. PubMed ID: 23009666 [TBL] [Abstract][Full Text] [Related]
9. The nature of graphite- and pyridinelike nitrogen configurations in carbon nitride nanotubes: dependence on diameter and helicity. Yang SH; Shin WH; Kang JK Small; 2008 Apr; 4(4):437-41. PubMed ID: 18348228 [No Abstract] [Full Text] [Related]
10. Synergistic increase of oxygen reduction favourable Fe-N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets. Zhang S; Liu B; Chen S Phys Chem Chem Phys; 2013 Nov; 15(42):18482-90. PubMed ID: 24071648 [TBL] [Abstract][Full Text] [Related]
11. Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas. Hu Y; Verdegaal WM; Yu SH; Jiang HL ChemSusChem; 2014 Mar; 7(3):734-7. PubMed ID: 24464970 [TBL] [Abstract][Full Text] [Related]
12. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping. Yang Y; Li X; Jiang J; Du H; Zhao L; Zhao Y ACS Nano; 2010 Oct; 4(10):5755-62. PubMed ID: 20919730 [TBL] [Abstract][Full Text] [Related]
13. A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2. Sawant SY; Somani RS; Bajaj HC; Sharma SS J Hazard Mater; 2012 Aug; 227-228():317-26. PubMed ID: 22682801 [TBL] [Abstract][Full Text] [Related]
14. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture. Tan X; Kou L; Tahini HA; Smith SC Sci Rep; 2015 Dec; 5():17636. PubMed ID: 26621618 [TBL] [Abstract][Full Text] [Related]
15. Separation of CO2-CH4 mixtures on defective single walled carbon nanohorns--tip does matter. Furmaniak S; Terzyk AP; Kowalczyk P; Kaneko K; Gauden PA Phys Chem Chem Phys; 2013 Oct; 15(39):16468-76. PubMed ID: 24002701 [TBL] [Abstract][Full Text] [Related]
16. Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO₂/N₂ mixtures. Razavi SS; Hashemianzadeh SM; Karimi H J Mol Model; 2011 May; 17(5):1163-72. PubMed ID: 20694736 [TBL] [Abstract][Full Text] [Related]
17. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. Vikramaditya T; Sumithra K J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720 [TBL] [Abstract][Full Text] [Related]
18. Borophene as a Promising Material for Charge-Modulated Switchable CO Tan X; Tahini HA; Smith SC ACS Appl Mater Interfaces; 2017 Jun; 9(23):19825-19830. PubMed ID: 28537075 [TBL] [Abstract][Full Text] [Related]
19. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications. Zhang Y; Zhang J; Su DS ChemSusChem; 2014 May; 7(5):1240-50. PubMed ID: 24678055 [TBL] [Abstract][Full Text] [Related]
20. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. García S; Pis JJ; Rubiera F; Pevida C Langmuir; 2013 May; 29(20):6042-52. PubMed ID: 23617579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]