These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1063 related articles for article (PubMed ID: 24488856)
1. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
2. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest. Renninger HJ; Carlo NJ; Clark KL; Schäfer KV Front Plant Sci; 2015; 6():297. PubMed ID: 25999966 [TBL] [Abstract][Full Text] [Related]
3. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151 [TBL] [Abstract][Full Text] [Related]
4. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252 [TBL] [Abstract][Full Text] [Related]
5. The diversity of (13)C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance. Roussel M; Dreyer E; Montpied P; Le-Provost G; Guehl JM; Brendel O J Exp Bot; 2009; 60(8):2419-31. PubMed ID: 19380420 [TBL] [Abstract][Full Text] [Related]
6. Photosynthesis of Quercus suber is affected by atmospheric NH3 generated by multifunctional agrosystems. Pintó-Marijuan M; Da Silva AB; Flexas J; Dias T; Zarrouk O; Martins-Loução MA; Chaves MM; Cruz C Tree Physiol; 2013 Dec; 33(12):1328-37. PubMed ID: 24150034 [TBL] [Abstract][Full Text] [Related]
7. Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Juárez-López FJ; Escudero A; Mediavilla S Tree Physiol; 2008 Mar; 28(3):367-74. PubMed ID: 18171660 [TBL] [Abstract][Full Text] [Related]
8. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943 [TBL] [Abstract][Full Text] [Related]
9. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature. Arend M; Brem A; Kuster TM; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():169-76. PubMed ID: 22776350 [TBL] [Abstract][Full Text] [Related]
10. Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in Quercus coccifera L. under Mediterranean conditions. Peguero-Pina JJ; Sisó S; Fernández-Marín B; Flexas J; Galmés J; García-Plazaola JI; Niinemets Ü; Sancho-Knapik D; Gil-Pelegrín E Tree Physiol; 2016 Mar; 36(3):356-67. PubMed ID: 26705310 [TBL] [Abstract][Full Text] [Related]
11. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments. Jaime R; Serichol C; Alcántara JM; Rey PJ Plant Biol (Stuttg); 2014 Mar; 16(2):354-64. PubMed ID: 23957244 [TBL] [Abstract][Full Text] [Related]
12. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Daley MJ; Phillips NG Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920 [TBL] [Abstract][Full Text] [Related]
13. Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). Peguero-Pina JJ; Sisó S; Sancho-Knapik D; Díaz-Espejo A; Flexas J; Galmés J; Gil-Pelegrín E Tree Physiol; 2016 Mar; 36(3):287-99. PubMed ID: 26496958 [TBL] [Abstract][Full Text] [Related]
14. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Xu L; Baldocchi DD Tree Physiol; 2003 Sep; 23(13):865-77. PubMed ID: 14532010 [TBL] [Abstract][Full Text] [Related]
15. Leaf-age effects on temperature responses of photosynthesis and respiration of an alpine oak, Quercus aquifolioides, in southwestern China. Zhou H; Xu M; Pan H; Yu X Tree Physiol; 2015 Nov; 35(11):1236-48. PubMed ID: 26452765 [TBL] [Abstract][Full Text] [Related]
16. Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest. Guàrdia M; Fernàndez J; Elena G; Fleck I Tree Physiol; 2012 Jul; 32(7):829-38. PubMed ID: 22539636 [TBL] [Abstract][Full Text] [Related]
17. Canopy stomatal conductance following drought, disturbance, and death in an upland oak/pine forest of the new jersey pine barrens, USA. Schäfer KV Front Plant Sci; 2011; 2():15. PubMed ID: 22639580 [TBL] [Abstract][Full Text] [Related]
18. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [TBL] [Abstract][Full Text] [Related]
19. Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat. Donovan LA; West JB; McLeod KW Tree Physiol; 2000 Aug; 20(14):929-36. PubMed ID: 11303567 [TBL] [Abstract][Full Text] [Related]
20. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Cavender-Bares J; Sack L; Savage J Tree Physiol; 2007 Apr; 27(4):611-20. PubMed ID: 17242002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]