These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24489819)

  • 21. Intelligibility of whispered speech in stationary and modulated noise maskers.
    Freyman RL; Griffin AM; Oxenham AJ
    J Acoust Soc Am; 2012 Oct; 132(4):2514-23. PubMed ID: 23039445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pitch-interval discrimination and musical expertise: is the semitone a perceptual boundary?
    Mary Zarate J; Ritson CR; Poeppel D
    J Acoust Soc Am; 2012 Aug; 132(2):984-93. PubMed ID: 22894219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tone language experience modulates the effect of long-term musical training on musical pitch perception.
    Tong X; Choi W; Man YY
    J Acoust Soc Am; 2018 Aug; 144(2):690. PubMed ID: 30180694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A systematic review of the voice-tagging hypothesis of speech-in-noise perception.
    Rosenthal MA
    Neuropsychologia; 2020 Jan; 136():107256. PubMed ID: 31715197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced syllable discrimination thresholds in musicians.
    Zuk J; Ozernov-Palchik O; Kim H; Lakshminarayanan K; Gabrieli JD; Tallal P; Gaab N
    PLoS One; 2013; 8(12):e80546. PubMed ID: 24339875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Long-Term Musical Training on Cortical Auditory Evoked Potentials.
    Brown CJ; Jeon EK; Driscoll V; Mussoi B; Deshpande SB; Gfeller K; Abbas PJ
    Ear Hear; 2017; 38(2):e74-e84. PubMed ID: 28225736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gaps-in-noise detection and gender identification from noise-vocoded vowel segments: Comparing performance of active musicians to non-musicians.
    Donai JJ; Jennings MB
    J Acoust Soc Am; 2016 May; 139(5):EL128. PubMed ID: 27250197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of musical and psychoacoustical training on pitch discrimination.
    Micheyl C; Delhommeau K; Perrot X; Oxenham AJ
    Hear Res; 2006 Sep; 219(1-2):36-47. PubMed ID: 16839723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thai Rate-Varied Vowel Length Perception and the Impact of Musical Experience.
    Cooper A; Wang Y; Ashley R
    Lang Speech; 2017 Mar; 60(1):65-84. PubMed ID: 28326992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inherent auditory skills rather than formal music training shape the neural encoding of speech.
    Mankel K; Bidelman GM
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):13129-13134. PubMed ID: 30509989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Musical training enhances neural processing of binaural sounds.
    Parbery-Clark A; Strait DL; Hittner E; Kraus N
    J Neurosci; 2013 Oct; 33(42):16741-7. PubMed ID: 24133275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in a Musician's Advantage for Speech-in-Speech Perception Based on Age and Task.
    Cohn M; Barreda S; Zellou G
    J Speech Lang Hear Res; 2023 Feb; 66(2):545-564. PubMed ID: 36729698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Musician effect on perception of spectro-temporally degraded speech, vocal emotion, and music in young adolescents.
    Başkent D; Fuller CD; Galvin JJ; Schepel L; Gaudrain E; Free RH
    J Acoust Soc Am; 2018 May; 143(5):EL311. PubMed ID: 29857757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Musical training, individual differences and the cocktail party problem.
    Swaminathan J; Mason CR; Streeter TM; Best V; Kidd G; Patel AD
    Sci Rep; 2015 Jun; 5():11628. PubMed ID: 26112910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Musical Training and Hearing Loss on Fundamental Frequency Discrimination and Temporal Fine Structure Processing: Psychophysics and Modeling.
    Bianchi F; Carney LH; Dau T; Santurette S
    J Assoc Res Otolaryngol; 2019 Jun; 20(3):263-277. PubMed ID: 30693416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch.
    Bidelman GM; Gandour JT; Krishnan A
    Brain Cogn; 2011 Oct; 77(1):1-10. PubMed ID: 21835531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of musical background on judgments of dysphonia.
    Eadie TL; Van Boven L; Stubbs K; Giannini E
    J Voice; 2010 Jan; 24(1):93-101. PubMed ID: 19038531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Domain-specific hearing-in-noise performance is associated with absolute pitch proficiency.
    Hsieh IH; Tseng HC; Liu JW
    Sci Rep; 2022 Sep; 12(1):16344. PubMed ID: 36175508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Musical experience limits the degradative effects of background noise on the neural processing of sound.
    Parbery-Clark A; Skoe E; Kraus N
    J Neurosci; 2009 Nov; 29(45):14100-7. PubMed ID: 19906958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.